Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(52): 33028-33033, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318218

RESUMEN

Oxidized organic aerosol (OOA) is a major component of ambient particulate matter, substantially impacting climate, human health, and ecosystems. OOA is readily produced in the presence of sunlight, and requires days of photooxidation to reach the levels observed in the atmosphere. High concentrations of OOA are thus expected in the summer; however, our current mechanistic understanding fails to explain elevated OOA during wintertime periods of low photochemical activity that coincide with periods of intense biomass burning. As a result, atmospheric models underpredict OOA concentrations by a factor of 3 to 5. Here we show that fresh emissions from biomass burning exposed to NO2 and O3 (precursors to the NO3 radical) rapidly form OOA in the laboratory over a few hours and without any sunlight. The extent of oxidation is sensitive to relative humidity. The resulting OOA chemical composition is consistent with the observed OOA in field studies in major urban areas. Additionally, this dark chemical processing leads to significant enhancements in secondary nitrate aerosol, of which 50 to 60% is estimated to be organic. Simulations that include this understanding of dark chemical processing show that over 70% of organic aerosol from biomass burning is substantially influenced by dark oxidation. This rapid and extensive dark oxidation elevates the importance of nocturnal chemistry and biomass burning as a global source of OOA.


Asunto(s)
Contaminantes Atmosféricos/química , Contaminación del Aire/estadística & datos numéricos , Biomasa , Material Particulado/química , Aerosoles/química , Ciudades , Modelos Teóricos , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/química , Oxidación-Reducción , Oxígeno/química
2.
Environ Res ; 201: 111617, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34228953

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) represent one of the major toxic pollutants associated with PM2.5 with significant human health and climate effects. Because of local and long-range transport of atmospheric PAHs to receptor sites, higher global attentions have been focused to improve PAHs pollution emission management. In this study, PM2.5 samples were collected at three urban sites located in the capital of Iran, Tehran, during the heating and non-heating periods (H-period and NH-period). The US EPA 16 priority PAHs were analyzed and the data were processed to the following detailed aims: (i) investigate the H-period and NH-period variations of PM2.5 and PM2.5-bound PAHs concentrations; (ii) identify the PAHs sources and the source locations during the two periods; (iii) carry out a source-specific excess cancer risk (ECR) assessment highlighting the potential source locations contributing to the ECR using a hybrid approach. Total PAHs (TPAHs) showed significantly higher concentrations (1.56-1.89 times) during the H-period. Among the identified PAHs compounds, statistically significant periodical differences (p-value < 0.05) were observed only between eight PAHs species (Nap, BaA, Chr, BbF, BkF, BaP, IcdP, and DahA) at all three sampling sites which can be due to the significant differences of PAHs emission sources during H and NH-periods. High molecular weight (HMW) PAHs accounted for 52.7% and 46.8% on average of TPAHs during the H-period and NH-period, respectively. Positive matrix factorization (PMF) led to identifying four main PAHs sources including industrial emissions, petrogenic emissions, biomass burning and natural gas emissions, and vehicle exhaust emissions. Industrial and petrogenic emissions exhibited the highest contribution (19.8%, 27.2%, respectively) during the NH-period, while vehicle exhaust and biomass burning-natural gas emissions showed the largest contribution (40.7%, 29.6%, respectively) during the H-period. Concentration weighted trajectory (CWT) on factor contributions was used for tracking the potential locations of the identified sources. In addition to local sources, long-range transport contributed to a significant fraction of TPHAs in Tehran both during the H- and NH-periods. Source-specific carcinogenic risks assessment apportioned vehicle exhaust (44.2%, 2.52 × 10-4) and biomass burning-natural gas emissions (33.9%, 8.31 × 10-5) as the main cancer risk contributors during the H-period and NH-period, respectively. CWT maps pointed out the different distribution patterns associated with the cancer risk from the identified sources. This will allow better risk management through the identification of priority PAHs sources.


Asunto(s)
Neoplasias , Hidrocarburos Policíclicos Aromáticos , Calefacción , Humanos , Irán , Medio Oriente , Material Particulado
3.
Environ Sci Technol ; 54(2): 975-984, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31755707

RESUMEN

The response of respiratory infections to source-specific particulate matter (PM) is an area of active research. Using source-specific PM2.5 concentrations at six urban sites in New York State, a case-crossover design, and conditional logistic regression, we examined the association between source-specific PM and the rate of hospitalizations and emergency department (ED) visits for influenza or culture-negative pneumonia from 2005 to 2016. There were at most N = 14 764 influenza hospitalizations, N = 57 522 influenza ED visits, N = 274 226 culture-negative pneumonia hospitalizations, and N = 113 997 culture-negative pneumonia ED visits included in our analyses. We separately estimated the rate of respiratory infection associated with increased concentrations of source-specific PM2.5, including secondary sulfate (SS), secondary nitrate (SN), biomass burning (BB), pyrolyzed organic carbon (OP), road dust (RD), residual oil (RO), diesel (DIE), and spark ignition vehicle emissions (GAS). Increased rates of ED visits for influenza were associated with interquartile range increases in concentrations of GAS (excess rate [ER] = 9.2%; 95% CI: 4.3%, 14.3%) and DIE (ER = 3.9%; 95% CI: 1.1%, 6.8%) for lag days 0-3. There were similar associations between BB, SS, OP, and RO, and ED visits or hospitalizations for influenza, but not culture-negative pneumonia hospitalizations or ED visits. Short-term increases in PM2.5 from traffic and other combustion sources appear to be a potential risk factor for increased rates of influenza hospitalizations and ED visits.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Hospitalización , Infecciones del Sistema Respiratorio , Adulto , Servicio de Urgencia en Hospital , Humanos , New York , Material Particulado
4.
Environ Res ; 181: 108912, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31753467

RESUMEN

Prior work found increased rates for emergency department (ED) visits for asthma and hospitalizations for chronic obstructive pulmonary disease per unit mass of PM2.5 across New York State (NYS) during 2014-2016 after significant reductions in ambient PM2.5 concentrations had occurred following implementation of various policy actions and major economic disruptions. The associations of source-specific PM2.5 concentrations with these respiratory diseases were assessed with a time-stratified case-cossover design and logistic regression models to identify the changes in the PM2.5 that have led to the apparently increased toxicity per unit mass. The rates of ED visits and hospitalizations for asthma and COPD associated with increases in source-specific PM2.5 concentrations in the prior 1, 4, and 7 days were estimated for 6 urban sites in New York State. Overall, there were similar numbers of significantly increased (n = 9) and decreased rates (n = 8) of respiratory events (asthma and COPD hospitalizations and ED visits) associated with increased source-specific PM2.5 concentrations in the previous 1, 4, and 7 days. Associations of source-specific PM2.5 concentrations with excess rates of hospitalizations for COPD for spark- and compression ignition vehicles increased in the 2014-2016 period, but the values were not statistically significant. Other source types showed inconsistent patterns of excess rates. For asthma ED visits, only biomass burning and road dust showed consistent positive associations with road dust having significant values for most lag times. Secondary nitrate also showed significant positive associations with asthma ED visits in the AFTER period compared to no associations in the prior periods. These results suggest that the relationships of asthma and COPD exacerbation with source-specific PM2.5 are not well defined and further work will be needed to determine the causes of the apparent increases in the per unit mass toxicity of PM2.5 in New York State in the 2014-16 period.


Asunto(s)
Contaminación del Aire , Servicio de Urgencia en Hospital , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Atmosféricos , Hospitalización , Humanos , Masculino , New York , Material Particulado
5.
Environ Health ; 18(1): 82, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492149

RESUMEN

BACKGROUND: Previous studies have reported that fine particle (PM2.5) concentrations triggered ST elevation myocardial infarctions (STEMI). In Rochester, NY, multiple air quality policies and economic changes/influences from 2008 to 2013 led to decreased concentrations of PM2.5 and its major constituents (SO42-, NO3-, elemental and primary organic carbon). This study examined whether the rate of STEMI associated with increased ambient gaseous and PM component concentrations was different AFTER these air quality policies and economic changes (2014-2016), compared to DURING (2008-2013) and BEFORE these polices and changes (2005-2007). METHODS: Using 921 STEMIs treated at the University of Rochester Medical Center (2005-2016) and a case-crossover design, we examined whether the rate of STEMI associated with increased PM2.5, ultrafine particles (UFP, < 100 nm), accumulation mode particles (AMP, 100-500 nm), black carbon, SO2, CO, and O3 concentrations in the previous 1-72 h was modified by the time period related to these pollutant source changes (BEFORE, DURING, AFTER). RESULTS: Each interquartile range (3702 particles/cm3) increase in UFP concentration in the previous 1 h was associated with a 12% (95% CI = 3%, 22%) increase in the rate of STEMI. The effect size was larger in the AFTER period (26%) than the DURING (5%) or BEFORE periods (9%). There were similar patterns for black carbon and SO2. CONCLUSIONS: An increased rate of STEMI associated with UFP and other pollutant concentrations was higher in the AFTER period compared to the BEFORE and DURING periods. This may be due to changes in PM composition (e.g. higher secondary organic carbon and particle bound reactive oxygen species) following these air quality policies and economic changes.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/prevención & control , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/efectos adversos , Infarto del Miocardio con Elevación del ST/epidemiología , Anciano , Anciano de 80 o más Años , Estudios Cruzados , Femenino , Gases/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , New York/epidemiología , Tamaño de la Partícula , Infarto del Miocardio con Elevación del ST/inducido químicamente
6.
Environ Res ; 167: 7-14, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30005199

RESUMEN

Land-use regression (LUR) models provide location and time specific estimates of exposure to air pollution and thereby improve the sensitivity of health effects models. However, they require pollutant concentrations at multiple locations along with land-use variables. Often, monitoring is performed over short durations using mobile monitoring with research-grade instruments. Low-cost PM monitors provide an alternative approach that increases the spatial and temporal resolution of the air quality data. LUR models were developed to predict hourly PM concentrations across a metropolitan area using PM concentrations measured simultaneously at multiple locations with low-cost monitors. Monitors were placed at 23 sites during the 2015/16 heating season. Monitors were externally calibrated using co-located measurements including a reference instrument (GRIMM particle spectrometer). LUR models for each hour of the day and weekdays/weekend days were developed using the deletion/substitution/addition algorithm. Coefficients of determination for hourly PM predictions ranged from 0.66 and 0.76 (average 0.7). The hourly-resolved LUR model results will be used in epidemiological studies to examine if and how quickly, increases in ambient PM concentrations trigger adverse health events by reducing the exposure misclassification that arises from using less time resolved exposure estimates.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Modelos Teóricos , Material Particulado , Estaciones del Año
7.
Sensors (Basel) ; 17(8)2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28825680

RESUMEN

There is concern regarding the heterogeneity of exposure to airborne particulate matter (PM) across urban areas leading to negatively biased health effects models. New, low-cost sensors now permit continuous and simultaneous measurements to be made in multiple locations. Measurements of ambient PM were made from October to April 2015-2016 and 2016-2017 to assess the spatial and temporal variability in PM and the relative importance of traffic and wood smoke to outdoor PM concentrations in Rochester, NY, USA. In general, there was moderate spatial inhomogeneity, as indicated by multiple pairwise measures including coefficient of divergence and signed rank tests of the value distributions. Pearson correlation coefficients were often moderate (~50% of units showed correlations >0.5 during the first season), indicating that there was some coherent variation across the area, likely driven by a combination of meteorological conditions (wind speed, direction, and mixed layer heights) and the concentration of PM2.5 being transported into the region. Although the accuracy of these PM sensors is limited, they are sufficiently precise relative to one another and to research grade instruments that they can be useful is assessing the spatial and temporal variations across an area and provide concentration estimates based on higher-quality central site monitoring data.

8.
Atmos Environ (1994) ; 139: 56-74, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32288548

RESUMEN

Atmospheric particles are of high concern due to their toxic properties and effects on climate, and large airports are known as significant sources of particles. This study investigates the contribution of the Airport of Venice (Italy) to black carbon (BC), total particle number concentrations (PNC) and particle number size distributions (PNSD) over a large range (14 nm-20 µm). Continuous measurements were conducted between April and June 2014 at a site located 110 m from the main taxiway and 300 m from the runway. Results revealed no significantly elevated levels of BC and PNC, but exhibited characteristic diurnal profiles. PNSD were then analysed using both k-means cluster analysis and positive matrix factorization. Five clusters were extracted and identified as midday nucleation events, road traffic, aircraft, airport and nighttime pollution. Six factors were apportioned and identified as probable sources according to the size profiles, directional association, diurnal variation, road and airport traffic volumes and their relationships to micrometeorology and common air pollutants. Photochemical nucleation accounted for ∼44% of total number, followed by road + shipping traffic (26%). Airport-related emissions accounted for ∼20% of total PNC and showed a main mode at 80 nm and a second mode beyond the lower limit of the SMPS (<14 nm). The remaining factors accounted for less than 10% of number counts, but were relevant for total volume concentrations: nighttime nitrate, regional pollution and local resuspension. An analysis of BC levels over different wind sectors revealed no especially significant contributions from specific directions associated with the main local sources, but a potentially significant role of diurnal dynamics of the mixing layer on BC levels. The approaches adopted in this study have identified and apportioned the main sources of particles and BC at an international airport located in area affected by a complex emission scenario. The results may underpin measures for improving local and regional air quality, and health impact assessment studies.

9.
Atmos Environ (1994) ; 95: 409-455, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32288558

RESUMEN

Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

10.
Environ Sci Atmos ; 3(9): 1319-1334, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-38013728

RESUMEN

Pellet combustion in residential heating stoves has increased globally during the last decade. Despite their high combustion efficiency, the widespread use of pellet stoves is expected to adversely impact air quality. The atmospheric aging of pellet emissions has received even less attention, focusing mainly on daytime conditions, while the degree to which pellet emissions undergo night-time aging as well as the role of relative humidity remain poorly understood. In this study, environmental simulation chamber experiments were performed to characterize the fresh and aged organic aerosol (OA) emitted by a pellet stove. The fresh pellet stove PM1 (particulate matter with an aerodynamic diameter less than 1 µm) emissions consisted mainly of OA (93 ± 4%, mean ± standard deviation) and black carbon (5 ± 3%). The primary OA (POA) oxygen-to-carbon ratio (O : C) was 0.58 ± 0.04, higher than that of fresh logwood emissions. The fresh OA at a concentration of 70 µg m-3 (after dilution and equilibration in the chamber) consisted of semi-volatile (68%), low and extremely low volatility (16%) and intermediate-volatility (16%) compounds. The oxidation of pellet emissions under dark conditions was investigated by injecting nitrogen dioxide (NO2) and ozone (O3) into the chamber, at different (10-80%) relative humidity (RH) levels. In all dark aging experiments secondary organic aerosol (SOA) formation was observed, increasing the OA levels after a few hours of exposure to NO3 radicals. The change in the aerosol composition and the extent of oxidation depended on RH. For low RH, the SOA mass formed was up to 30% of the initial OA, accompanied by a moderate change in both O : C levels (7-8% increase) and the OA spectrum. Aging under higher RH conditions (60-80%) led to a more oxygenated aerosol (increase in O : C of 11-18%), but only a minor (1-10%) increase in OA mass. The increase in O : C at high RH indicates the importance of heterogeneous aqueous reactions in this system, that oxidize the original OA with a relatively small net change in the OA mass. These results show that the OA in pellet emissions can chemically evolve under low photochemical activity (e.g. the wintertime period) with important enhancement in SOA mass under certain conditions.

11.
Environ Pollut ; 310: 119797, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35863706

RESUMEN

In the past several decades, a variety of efforts have been made in the United States to improve air quality, and ambient particulate matter (PM) concentrations have been used as a metric to evaluate the efficacy of environmental policies. However, ambient PM concentrations result from a combination of source emission rates and meteorological conditions, which also change over time. Dispersion normalization was recently developed to reduce the influence of atmospheric dispersion and proved an effective approach that enhanced diel/seasonal patterns and thus provides improved source apportionment results for speciated PM mass and particle number concentration (PNC) measurements. In this work, dispersion normalization was incorporated in long-term trend analysis of 11-500 nm PNCs derived from particle number size distributions (PNSDs) measured in Rochester, NY from 2005 to 2019. Before dispersion normalization, a consistent reduction was observed across the measured size range during 2005-2012, while after 2012, the decreasing trends slowed down for accumulation mode PNCs (100-500 nm) and reversed for ultrafine particles (UFPs, 11-100 nm). Through dispersion normalization, we showed that these changes were driven by both emission rates and dispersion. Thus, it is important for future studies to assess the effects of the changing meteorological conditions when evaluating policy effectiveness on controlling PM concentrations. Before and after dispersion normalization, an evident increase in nucleation mode particles was observed during 2015-2019. This increase was possibly enabled by a cleaner atmosphere and will pose new challenges for future source apportionment and accountability studies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , New York , Tamaño de la Partícula , Material Particulado , Emisiones de Vehículos
12.
J Environ Monit ; 13(9): 2543-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21779610

RESUMEN

An approach is presented to study the functioning of a karstic massif and assess the adverse effects of the anthropogenic pressure by monitoring some water chemical and physical parameters of its main springs. The approach has been applied to the Sette Comuni Plateau (Veneto Region, Italy) hosting a well developed karstic system, whose aquifer presents high vulnerability and undergoes a relevant anthropogenic pressure. The Oliero springs, amongst the largest karstic springs in Europe, are the main water output of the plateau. Electrical conductivity, pH, dissolved O(2), hardness, alkalinity, chemical oxygen demand, total suspended solids, ionic species (NH(4)(+), NO(3)(-), NO(2)(-), PO(4)(3-), SO(4)(2-), Cl(-), F(-)), elements (Cr(III), Cr(VI), Mn, Fe, Ni, Cu, Zn, As, Cd, Hg, Pb), and some chlorinated solvents were monitored for one year. This study presents the application of a factor analysis on the water parameters enabling the identification of the dominant chemical and biological processes and pollution sources affecting the karstic system. Results show four factors which are interpreted as karstification, photosynthesis, storm flow pollution and anions. Finally, by associating metals, chemical oxygen demand and total suspended solids with the amount of rainfall in the 48 h before samplings, further detailed information to the fast response of the aquifer to precipitation events was detected and interpreted according to the factor analysis results. The proposed approach, by providing information on the functioning of the aquifer, may help the management of the karstic plateau and is easily adaptable to similar environments.


Asunto(s)
Monitoreo del Ambiente/métodos , Manantiales Naturales/química , Contaminantes Químicos del Agua/análisis , Agricultura/estadística & datos numéricos , Sulfato de Calcio/química , Densidad de Población , Estaciones del Año
13.
Chemosphere ; 283: 131187, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34157623

RESUMEN

The Phosphorus (III) derivatives, named Phosphonates, include congeners with properties as fungicides that are effective in controlling Oomycetes. Examples are organic compounds like Fosetyl-Al [Aluminium tris-(ethylphosphonate)] and salts formed with the anion of phosphonic acid [(OH)2HPO] and Potassium, Sodium and Ammonium cations. According to IUPAC, the correct nomenclature for these compounds is "phosphonates", but in common language and scientific literature they are often named "phosphites", creating ambiguity. The European legislation restricts the use of phosphonates, with the ban for application in organic agriculture. However, phosphonate residues were detected in some organic products due to their addition to fertilizers allowed in organic agriculture. The legitimacy of this addition is controversial, as it is not evident if phosphonates have also a nutritional role in addition to their fungicidal properties. The new European Directive EU 1009/2019 resolves the problem by banning the phosphonates addition to fertilizers and placing a limit of 0.5% by mass for unintentional addition. However, an official method is not available for phosphonates determination in fertilizers and approval by the European Committee for Standardization (CEN) is necessary in a short time. This review presents an overview about the chemical, biological, analytical and legislative aspects of phosphonates and aims at providing: clarity on the correct nomenclature to avoid misunderstandings; the evaluation of phosphonates properties with the absence of a nutritional role, justifying the ban on adding to fertilizers; a summary of analytical techniques that could be considered by CEN to complete the analytical background for the agricultural use of phosphonates.


Asunto(s)
Organofosfonatos , Fosfitos , Agricultura , Fertilizantes , Fósforo
14.
J Hazard Mater ; 406: 124294, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33160788

RESUMEN

The island of Murano (Venice, Italy) is famous worldwide for its artistic glass production. Diarsenic trioxide was a main ingredient of the raw glass mixture until 2015, when the authorisation process of European REACH Regulation (Registration Evaluation Authorisation of Chemicals) entered into force, effectively forbidding the use of arsenic. A total of 3077 PM10 samples were collected across the Venice area in 2013-2017. This period included the REACH Sunset Date (May 2015). High arsenic concentrations were recorded in Murano before the Sunset Date (average 383 ng/m3), representing a serious concern for public health. Other sites in Venice complied with the EU target value. In 2013, concentrations were 36-folds higher than model estimation computed over the maximum-allowed emission scenario. Polar plot analysis indicated Murano as the major source of arsenic contamination. The concentration significantly dropped after the REACH implementation, thus meeting the European target values. However, high peaks of arsenic were still detected; inspections on raw and finished glass materials confirmed that some factories were still using arsenic. Results reported serious airborne arsenic pollution in Murano before the REACH implementation. This work represents an interesting case study on the effectiveness of the European REACH process.

15.
Ann Epidemiol ; 54: 79-86.e4, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33010415

RESUMEN

PURPOSE: Long-term exposure to ambient fine particle (PM2.5) concentrations has been associated with an increased rate or risk of neurodegenerative conditions, but individual PM sources have not been previously examined in relation to neurodegenerative diseases. METHODS: Using the Statewide Planning and Research Cooperative System database, we studied 63,287 hospital admissions with a primary diagnosis of either Alzheimer's disease, dementia, or Parkinson's disease for New York State residents living within 15 miles from six PM2.5 monitoring sites. In addition to PM2.5 concentrations, we studied seven specific PM2.5 sources: secondary sulfate, secondary nitrate, biomass burning, diesel, spark-ignition emissions, pyrolyzed organic rich, and road dust. We estimated the rate of neurodegenerative hospital admissions associated with increased concentration of PM2.5 and individual PM2.5 sources average concentrations in the previous 0-29, 0-179, and 0-364 days. RESULTS: Increases in ambient PM2.5 concentrations were not consistently associated with increased hospital admissions rates. Increased source-specific PM2.5 concentrations were associated with both increased (e.g., secondary sulfates and diesel emissions) and decreased rates (e.g., secondary nitrate and spark-ignition vehicular emissions) of neurodegenerative admissions. CONCLUSIONS: We did not observe clear associations between overall ambient PM2.5 concentrations or source-apportioned ambient PM2.5 contributions and rates of neurologic disease hospitalizations.


Asunto(s)
Contaminación del Aire , Hospitalización , Enfermedades Neurodegenerativas , Material Particulado , Adulto , Anciano , Anciano de 80 o más Años , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Monitoreo del Ambiente , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/terapia , New York/epidemiología , Material Particulado/análisis , Material Particulado/toxicidad , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad , Adulto Joven
16.
Sci Total Environ ; 704: 135287, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31896212

RESUMEN

This study investigates the major chemical components, particle-bound water content, acidity (pH), and major potential sources of PM2.5 in major cities (Belluno, Conegliano, Vicenza, Mestre, Padua, and Rovigo) in the eastern end of the Po Valley. The measured PM2.5 mass was reconstructed using a multiple-site hybrid chemical mass closure approach that also accounts for aerosol inorganic water content (AWC) estimated by the ISORROPIA-II model. Annually, organic matter accounted for 31-45% of the PM2.5 at all sites, followed by nitrate (10-19%), crustal material (10-14%), sulfate (8-10%), ammonium (5-9%), elemental carbon (4-7%), other inorganic ions (3-4%), and trace elements (0.2-0.3%). Water represented 7-10% of measured PM2.5. The ambient aerosol pH varied from 1.5 to 4.5 with lower values in summer (average in all sites 2.2 ± 0.3) and higher in winter (3.9 ± 0.3). Six major PM2.5 sources were quantitatively identified with multiple-site positive matrix factorization: secondary sulfate (34% of PM2.5), secondary nitrate (30%), biomass burning (17%), traffic (11%), re-suspended dust (5%), and fossil fuel combustion (3%). Biomass burning accounted for ~90% of total PAHs. Inorganic aerosol acidity was driven primarily by secondary sulfate, fossil fuel combustion (decreasing pH), secondary nitrate, and biomass burning (increasing pH). Secondary nitrate was the primary driver of the inorganic AWC variability. A concentration-weighted trajectory (multiple-site) analysis was used to identify potential source areas for the various factors and modeled aerosol acidity. Eastern and Central Europe were the main source areas of secondary species. Less acidic aerosol was associated with air masses originating from Northern Europe owing to the elevated presence of the nitrate factor. More acidic particles were observed for air masses traversing the Po Valley and the Mediterranean, possibly due to the higher contributions of fossil fuel combustion factor and the loss of nitric acid due to its interaction with coarse sea-salt particles.

18.
Sci Total Environ ; 654: 1167-1178, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30841391

RESUMEN

Ten relatively-low-cost ozone monitors (Aeroqual Series 500 with OZL ozone sensor) were deployed to assess the spatial and temporal variability of ambient ozone concentrations across residential areas in the Monroe County, New York from June to October 2017. The monitors were calibrated in the laboratory and then deployed to a local air quality monitoring site where they were compared to the federal equivalent method values. These correlations were used to correct the measured ozone concentrations. The values were also used to develop hourly land use regression models (LUR) based on the deletion/substitution/addition (D/S/A) algorithm that can be used to predict the spatial and temporal concentrations of ozone at any hour of a summertime day and given location in Monroe County. Adjusted R2 values were high (average 0.83) with the highest adjusted R2 for the model between 8 and 9 AM (i.e. 1-2 h after the peak of primary emissions during the morning rush hours). Spatial predictors with the highest positive effects on ozone estimates were high intensity developed areas, low and medium intensity developed areas, forests + shrubs, average elevation, Interstate + highways, and the annual average vehicular daily traffic counts. These predictors are associated with potential emissions of anthropogenic and biogenic precursors. Maps developed from the models exhibited reasonable spatial and temporal patterns, with low ozone concentrations overnight and the highest concentrations between 11 AM and 5 PM. The adjusted R2 between the model predictions and the measured values varied between 0.79 and 0.87 (mean = 0.83). The combined use of the network of low-cost monitors and LUR modeling provide useful estimates of intraurban ozone variability and exposure estimates that will be used in future epidemiological studies.

19.
J Expo Sci Environ Epidemiol ; 29(4): 500-509, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30940881

RESUMEN

Increased ambient air pollutant concentrations during pregnancy have been associated with reduced birth weight, but the etiologically relevant pregnancy time window(s) is/are unclear. In 76,500 singleton births in Monroe County, NY (2005-2016), who were 37-42 gestational weeks at delivery, we used generalized linear models to regress term birth weight against mean gestational month pollutant concentrations, adjusting for mean temperature, and maternal, infant, and medical service use characteristics. Overall, there were no clear patterns of term birth weight change associated with increased concentrations of any pollutant across gestational months. However, among Hispanic women only, increases in all pollutants, except O3, in multiple gestational months, were associated with decreased term birth weight. Each 3.25 µg/m3 increase in PM2.5 concentration in the 6th gestational month was associated with a -20.4 g (95% CI = -34.0, -6.8) reduction in term birth weight among Hispanic women, but a 4.1 g (95% CI = -2.5, 10.8) increase among non-Hispanic mothers (p for interaction < 0.001). Although ambient air pollutant concentrations during pregnancy were not associated with reduced term birth weight among women of all ethnicities living in Monroe County, this observed association in Hispanic mothers may be a result of less exposure misclassification and bias (due to closer residential proximity to the monitoring site).


Asunto(s)
Contaminantes Atmosféricos/análisis , Peso al Nacer , Adulto , Femenino , Humanos , Recién Nacido , Exposición Materna , New York , Embarazo
20.
Environ Int ; 126: 387-394, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30826617

RESUMEN

BACKGROUND: Previous work reported increased rates of acute cardiovascular hospitalizations associated with increased PM2.5 concentrations in the previous few days across urban centers in New York State from 2005 to 2016. These relative rates were higher after air quality policies and economic changes resulted in decreased PM2.5 concentrations and changes in PM composition (e.g. increased secondary organic carbon), compared to before and during these changes. Changes in PM composition and sources may explain this difference. OBJECTIVES: To estimate the rate of acute cardiovascular hospitalizations associated with increases in source specific PM2.5 concentrations. METHODS: Using source apportioned PM2.5 concentrations at the same NYS urban sites, a time-stratified case-crossover design, and conditional logistic regression models adjusting for ambient temperature and relative humidity, we estimated the rate of these acute cardiovascular hospitalizations associated with increases in mean source specific PM2.5 concentrations in the previous 1, 4, and 7 days. RESULTS: Interquartile range (IQR) increases in spark-ignition emissions (GAS) concentrations were associated with increased excess rates of cardiac arrhythmia hospitalizations (2.3%; 95% CI = 0.4%, 4.2%; IQR = 2.56 µg/m3) and ischemic stroke hospitalizations (3.7%; 95% CI = 1.1%, 6.4%; 2. 73 µg/m3) over the next day. IQR increases in diesel (DIE) concentrations were associated with increased rates of congestive heart failure hospitalizations (0.7%; 95% CI = 0.2% 1.3%; 0.51 µg/m3) and ischemic heart disease hospitalizations (0.8%; 95% CI = 0.3%, 1.3%; 0.60 µg/m3) over the next day, as hypothesized. However, secondary sulfate PM2.5 (SS) was not. Increased acute cardiovascular hospitalization rates were also associated with IQR increases in concentrations of road dust (RD), residual oil (RO), and secondary nitrate (SN) over the previous 1, 4, and 7 days, but not other sources. CONCLUSIONS: These findings suggest a role of several sources of PM2.5 in New York State (i.e. traffic emissions, non-traffic emissions such as brake and tire wear, residual oil, and nitrate that may also reflect traffic emissions) in the triggering of acute cardiovascular events.


Asunto(s)
Contaminantes Atmosféricos/análisis , Enfermedades Cardiovasculares/epidemiología , Hospitalización/estadística & datos numéricos , Material Particulado/análisis , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Contaminación del Aire/análisis , Ciudades/epidemiología , Monitoreo del Ambiente , Femenino , Humanos , Masculino , Persona de Mediana Edad , New York/epidemiología , Nitratos/análisis , Sulfatos/análisis , Emisiones de Vehículos/análisis , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA