Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(10): e2200083119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238641

RESUMEN

SignificanceWhile increasing evidence associates the disruption of circadian rhythms with pathologic conditions, including obesity, type 2 diabetes, and nonalcoholic fatty liver diseases (NAFLD), the involved mechanisms are still poorly described. Here, we show that, in both humans and mice, the pathogenesis of NAFLD is associated with the disruption of the circadian clock combined with perturbations of the growth hormone and sex hormone pathways. However, while this condition protects mice from the development of fibrosis and insulin resistance, it correlates with increased fibrosis in humans. This suggests that the perturbation of the circadian clock and its associated disruption of the growth hormone and sex hormone pathways are critical for the pathogenesis of metabolic and liver diseases.


Asunto(s)
Factores de Transcripción ARNTL/fisiología , Relojes Circadianos , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico/etiología , Factores de Transcripción ARNTL/genética , Animales , Dieta Alta en Grasa , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Leptina/genética , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética
2.
J Hepatol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944391

RESUMEN

BACKGROUND & AIMS: Regression of cirrhosis has been observed in patients with viral and non-viral etiologies of liver disease in whom the underlying cause of liver injury was effectively suppressed. However, the understanding of the factors contributing to reversibility of fibrosis and cirrhosis is limited. Our aims were to assess clinical factors, perform genotyping of known variants, and comprehensive metabolic phenotyping to characterize the regression of fibrosis in patients with compensated advanced chronic liver disease (cACLD). METHODS: In a case-control pilot study with 81 cACLD patients, we compared individuals exhibiting histological or clinical evidence of cACLD regression ("regressors"; n=44) with those showing no improvement ("non-regressors"; n=37) after a minimum of 24 months of successful therapy of the cause of liver disease. Data were validated using an external validation cohort (n=30). RESULTS: Regardless of the cause of cACLD, the presence of obesity (OR 0.267 95%CI:0.072-0.882; P=0.049), high liver stiffness (OR 0.960, 95%CI:0.925-0.995; P=0.032), and carriage of GCKR variant rs1260326 (OR 0.148, 95%CI:0.030-0.773; P=0.019) are associated with a reduced likelihood of fibrosis regression in a subgroup of 60 ACLD patients genotyped for known genetic variants. Using liver tissue transcriptomics, we identified metabolic pathways differentiating regressors from non-regressors, with top pathways associated to lipid metabolism -especially fatty acids, bile acids, phospholipids, triacylglycerides (biosynthesis), and the carnitine shuttle. In the entire discovery cohort, we further measured metabolites within the defined pathways, which led to identifying 33 circulating markers differentiating regressors from non-regressors after etiological therapy. The validation cohort confirmed 14 of the differentially expressed markers. CONCLUSIONS: We identified and validated a group of lipid biomarkers associated with regression of fibrosis that could be used as non-invasive biomarker for detecting regression of fibrosis in cACLD.

3.
Eur J Neurosci ; 56(1): 3738-3754, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35478208

RESUMEN

Mitochondria are an autonomous organelle that plays a crucial role in the metabolic aspects of a cell. Cortical spreading depression (CSD) and fluctuations in the cerebral blood flow have for long been mechanisms underlying migraine. It is a neurovascular disorder with a unilateral manifestation of disturbing, throbbing and pulsating head pain. Migraine affects 2.6% and 21.7% of the general population and is the major cause of partial disability in the age group 15-49. Higher mutation rates, imbalance in concentration of physiologically relevant molecules and oxidative stress biomarkers have been the main themes of discussion in determining the role of mitochondrial disability in migraine. The correlation of migraine with other disorders like hemiplegic migraine; mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes [MELAS]; tension-type headache (TTH); cyclic vomiting syndrome (CVS), ischaemic stroke; and hypertension has helped in the assessment of the physiological and morphogenetic basis of migraine. Here, we have reviewed the different nuances of mitochondrial dysfunction and migraine. The different mtDNA polymorphisms that can affect the generation and transmission of nerve impulse has been highlighted and supported with research findings. In addition to this, the genetic basis of migraine pathogenesis as a consequence of mutations in nuclear DNA that can, in turn, affect the synthesis of defective mitochondrial proteins is discussed along with a brief overview of epigenetic profile. This review gives an overview of the pathophysiology of migraine and explores mitochondrial dysfunction as a potential underlying mechanism. Also, therapeutic supplements for managing migraine have been discussed at different junctures in this paper.


Asunto(s)
Isquemia Encefálica , Síndrome MELAS , Trastornos Migrañosos , Accidente Cerebrovascular , Humanos , Síndrome MELAS/tratamiento farmacológico , Síndrome MELAS/genética , Síndrome MELAS/patología , Trastornos Migrañosos/genética , Mitocondrias/genética , Mutación , Accidente Cerebrovascular/complicaciones
4.
J Proteome Res ; 16(8): 2947-2953, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28650171

RESUMEN

Lipoproteins are responsible for the transport of lipids and other nutrients in the circulation and therefore play an important role in lipid metabolism and dyslipidemia. They have also been linked to multiple metabolic disorders including cardiovascular disease, and thus understanding their lipid composition is of crucial importance. Characterization of lipoproteins is a challenging task due to their heterogeneity. In particular, their fractionation is often laborious and time-consuming, making large sets of clinical samples difficult to analyze. We developed and validated lipidomics analysis of lipoproteins including chylomicrons, very low-density, low-density, and high-density lipoproteins. Lipoproteins were first fractionated by polyacrylamide tube gel electrophoresis, and, after liquid-liquid extraction, lipids were analyzed by direct-infusion mass spectrometry. About 100 unique lipid species were detected with good reproducibility and reliability. In addition to their lipid composition, valuable information on the fatty acid composition of lipoproteins and lipids was obtained. The presented method offers in-depth analysis of the lipid as well as fatty acid composition of lipoproteins while allowing a good sample throughput. It is thus especially suited for studying lipid associated diseases in clinical cohorts.


Asunto(s)
Lípidos/sangre , Lipoproteínas/análisis , Electroforesis de las Proteínas Sanguíneas , Humanos , Lipoproteínas HDL/sangre , Lipoproteínas LDL/sangre , Lipoproteínas VLDL/sangre , Extracción Líquido-Líquido , Espectrometría de Masas , Métodos
5.
J Neurochem ; 140(5): 766-775, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28002627

RESUMEN

The field of lipidomics has evolved vastly since its creation 15 years ago. Advancements in mass spectrometry have allowed for the identification of hundreds of intact lipids and lipid mediators. However, because of the release of fatty acids from the phospholipid membrane in the brain caused by ischemia, identifying the neurolipidome has been challenging. Microwave fixation has been shown to reduce the ischemia-induced release of several lipid mediators. Therefore, this study aimed to develop a method combining high-resolution tandem mass spectrometry (MS/MS), high-energy head-focused microwave fixation and statistical modeling, allowing for the measurement of intact lipids and lipid mediators in order to eliminate the ischemia-induced release of fatty acids and identify the rat neurolipidome. In this study, we demonstrated the ischemia-induced production of bioactive lipid mediators, and the reduction in variability using microwave fixation in combination with liquid chromatography (LC)-MS/MS. We have also illustrated for the first time that microwave fixation eliminates the alterations in intact lipid species following ischemia. While many phospholipid species were unchanged by ischemia, other intact lipid classes, such as diacylglycerol, were lower in concentration following microwave fixation compared to ischemia.


Asunto(s)
Isquemia Encefálica/fisiopatología , Metabolismo de los Lípidos , Neuronas/metabolismo , Transducción de Señal , Animales , Isquemia Encefálica/metabolismo , Ceramidas/metabolismo , Diglicéridos/metabolismo , Ácidos Grasos/metabolismo , Inflamación/inducido químicamente , Inflamación/fisiopatología , Lipopolisacáridos/farmacología , Masculino , Microondas , Fosfolípidos/metabolismo , Ratas , Ratas Long-Evans
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt A): 1092-1098, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28760485

RESUMEN

Recent studies suggest that at least two pools of plasma docosahexaenoic acid (DHA) can supply the brain: non-esterified DHA (NE-DHA) and lysophosphatidylcholine (lysoPtdCho)-DHA. In contrast to NE-DHA, brain uptake of lysoPtdCho-DHA appears to be mediated by a specific transporter, but whether both forms of DHA supply undergo the same metabolic fate, particularly with regards to enrichment of specific phospholipid (PL) subclasses, remains to be determined. This study aimed to evaluate brain uptake of NE-DHA and lysoPtdCho-DHA into brain PL classes. Fifteen-week-old rats were infused intravenously with radiolabelled NE-14C-DHA or lysoPtdCho-14C-DHA (n=4/group) over five mins to achieve a steady-state plasma level. PLs were extracted from the brain and separated by thin layer chromatography and radioactivity was quantified by liquid scintillation counting. The net rate of entry of lysoPtdCho-DHA into the brain was between 59% and 86% lower than the net rate of entry of NE-DHA, depending on the PL class. The proportion of total PL radioactivity in the lysoPtdCho-14C-DHA group compared to the NE-14C-DHA group was significantly higher in choline glycerophospholipids (ChoGpl) (48% vs 28%, respectively) but lower in ethanolamine glycerophospholipids (EtnGpl) (32% vs 46%, respectively). In both groups, radioactivity was disproportionally high in phosphatidylinositol and ChoGpl but low in phosphatidylserine and EtnGpl compared to the corresponding DHA pool size. This suggests that DHA undergoes extensive PL remodeling after entry into the brain.


Asunto(s)
Encéfalo/metabolismo , Ácidos Docosahexaenoicos , Glicerofosfolípidos/metabolismo , Lisofosfatidilcolinas , Animales , Ácidos Docosahexaenoicos/farmacocinética , Ácidos Docosahexaenoicos/farmacología , Lisofosfatidilcolinas/farmacocinética , Lisofosfatidilcolinas/farmacología , Masculino , Ratas , Ratas Sprague-Dawley
7.
FASEB J ; 30(5): 1913-26, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26839375

RESUMEN

Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 µM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 µM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.


Asunto(s)
Astrocitos/fisiología , Ácidos Grasos/farmacología , Cuerpos Cetónicos/metabolismo , Ácido Láctico/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Adenosina Trifosfato/biosíntesis , Células Cultivadas , Glucólisis , Humanos , Oxidación-Reducción , Consumo de Oxígeno , Células Madre Pluripotentes , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Rapid Commun Mass Spectrom ; 31(4): 344-350, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-27870154

RESUMEN

RATIONALE: Long-chain fatty acyl-coenzyme As (FA-CoAs) are important bioactive molecules, playing key roles in biosynthesis of fatty acids, membrane trafficking and signal transduction. Development of sensitive analytical methods for profiling theses lipid species in various tissues is critical to understand their biological activity. A high-pressure liquid chromatography/tandem mass spectrometry method has been developed for the quantitative analysis and screening of long-chain FACoAs in liver, brain, muscle and adipose tissue. METHODS: The sample preparation method consists of tissue homogenization, extraction with organic solvent and reconstitution in an ammonium hydroxide buffer. Extracts are separated by liquid chromatography (LC) on a reversed-phase column and detected by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in positive mode. An additional neutral loss scan allows for untargeted FA-CoAs screening. RESULTS: Extraction was optimized for low sample load (10 mg) of four tissue types (liver, brain, muscle and adipose tissue) with recoveries between 60-140% depending on the analyte and tissue type. Targeted quantification was validated for ten FA-CoAs in the range 0.1-500 ng/mL with accuracies between 85-120%. CONCLUSIONS: We have developed and validated a LC/MS/MS method for the quantifications and screening of long-chain FA-CoAs in four different types of mammalian tissue. The extraction method is straightforward and long-chain FA-CoA species can be quantified using only minimum amount of tissue. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Acilcoenzima A/análisis , Tejido Adiposo/enzimología , Encéfalo/enzimología , Hígado/enzimología , Músculos/enzimología , Espectrometría de Masas en Tándem/métodos , Animales , Cromatografía Liquida/métodos , Masculino , Especificidad de Órganos , Ratas , Ratas Sprague-Dawley
9.
J Proteome Res ; 15(7): 2228-35, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27185515

RESUMEN

We present a high-throughput, nontargeted lipidomics approach using liquid chromatography coupled to high-resolution mass spectrometry for quantitative analysis of nonesterified fatty acids. We applied this method to screen a wide range of fatty acids from medium-chain to very long-chain (8 to 24 carbon atoms) in human plasma samples. The method enables us to chromatographically separate branched-chain species from their straight-chain isomers as well as separate biologically important ω-3 and ω-6 polyunsaturated fatty acids. We used 51 fatty acid species to demonstrate the quantitative capability of this method with quantification limits in the nanomolar range; however, this method is not limited only to these fatty acid species. High-throughput sample preparation was developed and carried out on a robotic platform that allows extraction of 96 samples simultaneously within 3 h. This high-throughput platform was used to assess the influence of different types of human plasma collection and preparation on the nonesterified fatty acid profile of healthy donors. Use of the anticoagulants EDTA and heparin has been compared with simple clotting, and only limited changes have been detected in most nonesterified fatty acid concentrations.


Asunto(s)
Ácidos Grasos no Esterificados/sangre , Ensayos Analíticos de Alto Rendimiento/métodos , Lípidos/análisis , Cromatografía Liquida , Ácidos Grasos Omega-3/aislamiento & purificación , Ácidos Grasos Omega-6/aislamiento & purificación , Voluntarios Sanos , Humanos , Métodos , Plasma/química , Espectrometría de Masas en Tándem
10.
Biochim Biophys Acta ; 1851(4): 503-18, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25311170

RESUMEN

Obesity-associated low-grade inflammation of white adipose tissue (WAT) contributes to development of insulin resistance and other disorders. Accumulation of immune cells, especially macrophages, and macrophage polarization from M2 to M1 state, affect intrinsic WAT signaling, namely anti-inflammatory and proinflammatory cytokines, fatty acids (FA), and lipid mediators derived from both n-6 and n-3 long-chain PUFA such as (i) arachidonic acid (AA)-derived eicosanoids and endocannabinoids, and (ii) specialized pro-resolving lipid mediators including resolvins derived from both eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), lipoxins (AA metabolites), protectins and maresins (DHA metabolites). In this respect, potential differences in modulating adipocyte metabolism by various lipid mediators formed by inflammatory M1 macrophages typical of obese state, and non-inflammatory M2 macrophages typical of lean state remain to be established. Studies in mice suggest that (i) transient accumulation of M2 macrophages could be essential for the control of tissue FA levels during activation of lipolysis, (ii) currently unidentified M2 macrophage-borne signaling molecule(s) could inhibit lipolysis and re-esterification of lipolyzed FA back to triacylglycerols (TAG/FA cycle), and (iii) the egress of M2 macrophages from rebuilt WAT and removal of the negative feedback regulation could allow for a full unmasking of metabolic activities of adipocytes. Thus, M2 macrophages could support remodeling of WAT to a tissue containing metabolically flexible adipocytes endowed with a high capacity of both TAG/FA cycling and oxidative phosphorylation. This situation could be exemplified by a combined intervention using mild calorie restriction and dietary supplementation with EPA/DHA, which enhances the formation of "healthy" adipocytes. This article is part of a Special Issue entitled Oxygenated metabolism of PUFA: analysis and biological relevance."


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Inflamación/metabolismo , Metabolismo de los Lípidos , Obesidad/metabolismo , Transducción de Señal , Adipocitos/inmunología , Adipocitos/metabolismo , Tejido Adiposo Blanco/inmunología , Animales , Comunicación Celular , Metabolismo Energético , Humanos , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Metabolismo de los Lípidos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Obesidad/inmunología
11.
Nanomedicine ; 11(1): 239-45, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25262580

RESUMEN

In mammals, glycogen synthesis and degradation are dynamic processes regulating blood and cerebral glucose-levels within a well-defined physiological range. Despite the essential role of glycogen in hepatic and cerebral metabolism, its spatiotemporal distribution at the molecular and cellular level is unclear. By correlating electron microscopy and ultra-high resolution ion microprobe (NanoSIMS) imaging of tissue from fasted mice injected with (13)C-labeled glucose, we demonstrate that liver glycogenesis initiates in the hepatocyte perinuclear region before spreading toward the cell membrane. In the mouse brain, we observe that (13)C is inhomogeneously incorporated into astrocytic glycogen at a rate ~25 times slower than in the liver, in agreement with prior bulk studies. This experiment, using temporally resolved, nanometer-scale imaging of glycogen synthesis and degradation, provides greater insight into glucose metabolism in mammalian organs and shows how this technique can be used to explore biochemical pathways in healthy and diseased states.


Asunto(s)
Encéfalo/patología , Glucógeno/metabolismo , Hígado/patología , Nanotecnología/métodos , Animales , Astrocitos/citología , Glucemia/química , Encéfalo/metabolismo , Isótopos de Carbono/química , Citosol/metabolismo , Diagnóstico por Imagen/métodos , Glucosa/química , Glucosa/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Hígado/metabolismo , Masculino , Ratones , Microscopía Electrónica
12.
Pol Arch Intern Med ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38884596

RESUMEN

Laboratory tests play a central role in medicine, as they help to make diagnoses, assess prognosis, risk of disease, and monitor therapies, thus contributing to 70% of all medical decisions. This cross-sectional function offers great potential for technological and organizational innovation to influence healthcare as a whole. In recent years, a variety of technologies have emerged and entered the field of medical research, or even medical care. A new generation of biosensors allows the determination of laboratory tests at the point-of-care and enables faster medical decisions. Recent devices allow for patient-centric blood sampling, which eliminates the need for painful blood draws, patient traveling, and the workload of healthcare professionals. Analytical techniques such as metabolomics, lipidomics or proteomics can identify biomarkers extremely sensitively, even down to individual cells. Pharmacogenomics allows the determination of genetic polymorphisms that predict the response to chemotherapeutic agents. Machine-learning approaches can handle large amounts of multi-layered data for diagnostic applications. However, this enormous diagnostic potential is far from being utilized and only very few applications have been implemented in clinical practice. Why is this the case? In this article, we describe the key technology fields, discuss their medical potential and obstacles to their implementation. In addition, we present a methodological framework to support researchers, clinicians and authorities in the development and implementation of novel diagnostic approaches.

13.
Commun Med (Lond) ; 4(1): 39, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443644

RESUMEN

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disease worldwide, and can rapidly progress to metabolic dysfunction-associated steatohepatitis (MASH). Accurate preclinical models and methodologies are needed to understand underlying metabolic mechanisms and develop treatment strategies. Through meta-analysis of currently proposed mouse models, we hypothesized that a diet- and chemical-induced MASH model closely resembles the observed lipid metabolism alterations in humans. METHODS: We developed transcriptomics-driven metabolic pathway analysis (TDMPA), a method to aid in the evaluation of metabolic resemblance. TDMPA uses genome-scale metabolic models to calculate enzymatic reaction perturbations from gene expression data. We performed TDMPA to score and compare metabolic pathway alterations in MASH mouse models to human MASH signatures. We used an already-established WD+CCl4-induced MASH model and performed functional assays and lipidomics to confirm TDMPA findings. RESULTS: Both human MASH and mouse models exhibit numerous altered metabolic pathways, including triglyceride biosynthesis, fatty acid beta-oxidation, bile acid biosynthesis, cholesterol metabolism, and oxidative phosphorylation. We confirm a significant reduction in mitochondrial functions and bioenergetics, as well as in acylcarnitines for the mouse model. We identify a wide range of lipid species within the most perturbed pathways predicted by TDMPA. Triglycerides, phospholipids, and bile acids are increased significantly in mouse MASH liver, confirming our initial observations. CONCLUSIONS: We introduce TDMPA, a methodology for evaluating metabolic pathway alterations in metabolic disorders. By comparing metabolic signatures that typify human MASH, we show a good metabolic resemblance of the WD+CCl4 mouse model. Our presented approach provides a valuable tool for defining metabolic space to aid experimental design for assessing metabolism.


Steatotic liver disease, in which fat accumulates in the liver, is one of the most prevalent liver diseases worldwide and it is important to develop relevant animal models to help us understand its mechanisms. We aimed to assess the suitability of animal models for studying steatotic liver disease in humans. We developed an approach that evaluates how genes affect the metabolism or the chemical reactions and processes that occur in the body. We used it to compare a mouse model of the disease with human observations. Our results showed that there are significant changes in fat and energy metabolism in the mouse model. These observations match with changes observed in humans, suggesting it is a good model for studying human disease. Our findings could advance our understanding of the disease as well as help define strategies for its treatment.

14.
J Lipid Res ; 54(9): 2410-22, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23836105

RESUMEN

Brain eicosapentaenoic acid (EPA) levels are 250- to 300-fold lower than docosahexaenoic acid (DHA), at least partly, because EPA is rapidly ß-oxidized and lost from brain phospholipids. Therefore, we examined if ß-oxidation was necessary for maintaining low EPA levels by inhibiting ß-oxidation with methyl palmoxirate (MEP). Furthermore, because other metabolic differences between DHA and EPA may also contribute to their vastly different levels, this study aimed to quantify the incorporation and turnover of DHA and EPA into brain phospholipids. Fifteen-week-old rats were subjected to vehicle or MEP prior to a 5 min intravenous infusion of (14)C-palmitate, (14)C-DHA, or (14)C-EPA. MEP reduced the radioactivity of brain aqueous fractions for (14)C-palmitate-, (14)C-EPA-, and (14)C-DHA-infused rats by 74, 54, and 23%, respectively; while it increased the net rate of incorporation of plasma unesterified palmitate into choline glycerophospholipids and phosphatidylinositol and EPA into ethanolamine glycerophospholipids and phosphatidylserine. MEP also increased the synthesis of n-3 docosapentaenoic acid (n-3 DPA) from EPA. Moreover, the recycling of EPA into brain phospholipids was 154-fold lower than DHA. Therefore, the low levels of EPA in the brain are maintained by multiple redundant pathways including ß-oxidation, decreased incorporation from plasma unesterified FA pool, elongation/desaturation to n-3 DPA, and lower recycling within brain phospholipids.


Asunto(s)
Encéfalo/metabolismo , Ácido Eicosapentaenoico/metabolismo , Fosfolípidos/metabolismo , Animales , Ácido Eicosapentaenoico/sangre , Esterificación , Cinética , Masculino , Oxidación-Reducción , Fosfolípidos/sangre , Ratas , Ratas Sprague-Dawley , Agua/química
15.
Biomolecules ; 13(2)2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36830612

RESUMEN

Over the past decades, pathway analysis has become one of the most commonly used approaches for the functional interpretation of metabolomics data. Although the approach is widely used, it is not well standardized and the impact of different methodologies on the functional outcome is not well understood. Using four publicly available datasets, we investigated two main aspects of topological pathway analysis, namely the consideration of non-human native enzymatic reactions (e.g., from microbiota) and the interconnectivity of individual pathways. The exclusion of non-human native reactions led to detached and poorly represented reaction networks and to loss of information. The consideration of connectivity between pathways led to better emphasis of certain central metabolites in the network; however, it occasionally overemphasized the hub compounds. We proposed and examined a penalization scheme to diminish the effect of such compounds in the pathway evaluation. In order to compare and assess the results between different methodologies, we also performed over-representation analysis of the same datasets. We believe that our findings will raise awareness on both the capabilities and shortcomings of the currently used pathway analysis practices in metabolomics. Additionally, it will provide insights on various methodologies and strategies that should be considered for the analysis and interpretation of metabolomics data.


Asunto(s)
Lipidómica , Metabolómica , Metabolómica/métodos , Redes y Vías Metabólicas
16.
JHEP Rep ; 5(6): 100725, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37284141

RESUMEN

Background & Aims: Lipid metabolism plays an important role in liver pathophysiology. The liver lobule asymmetrically distributes oxygen and nutrition, resulting in heterogeneous metabolic functions. Periportal and pericentral hepatocytes have different metabolic functions, which lead to generating liver zonation. We developed spatial metabolic imaging using desorption electrospray ionisation mass spectrometry to investigate lipid distribution across liver zonation with high reproducibility and accuracy. Methods: Fresh frozen livers from healthy mice with control diet were analysed using desorption electrospray ionisation mass spectrometry imaging. Imaging was performed at 50 µm × 50 µm pixel size. Regions of interest (ROIs) were manually created by co-registering with histological data to determine the spatial hepatic lipids across liver zonation. The ROIs were confirmed by double immunofluorescence. The mass list of specific ROIs was automatically created, and univariate and multivariate statistical analysis were performed to identify statistically significant lipids across liver zonation. Results: A wide range of lipid species was identified, including fatty acids, phospholipids, triacylglycerols, diacylglycerols, ceramides, and sphingolipids. We characterised hepatic lipid signatures in three different liver zones (periportal zone, midzone, and pericentral zone) and validated the reproducibility of our method for measuring a wide range of lipids. Fatty acids were predominantly detected in the periportal region, whereas phospholipids were distributed in both the periportal and pericentral zones. Interestingly, phosphatidylinositols, PI(36:2), PI(36:3), PI(36:4), PI(38:5), and PI(40:6) were located predominantly in the midzone (zone 2). Triacylglycerols and diacylglycerols were detected mainly in the pericentral region. De novo triacylglycerol biosynthesis appeared to be the most influenced pathway across the three zones. Conclusions: The ability to accurately assess zone-specific hepatic lipid distribution in the liver could lead to a better understanding of lipid metabolism during the progression of liver disease. Impact and Implications: Zone-specific hepatic lipid metabolism could play an important role in lipid homoeostasis during disease progression. Herein, we defined the zone-specific references of hepatic lipid species in the three liver zones using molecular imaging. The de novo triacylglycerol biosynthesis was highlighted as the most influenced pathway across the three zones.

17.
Photochem Photobiol Sci ; 11(2): 371-80, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22173231

RESUMEN

High personal UVR doses can be gained during leisure activities, causing intense self-resolving inflammation (sunburn) of unprotected skin. UVR activates release of membrane fatty acids and upregulates their metabolism by cyclooxygenases (COX) and lipoxygenases (LOX) to different eicosanoids. While COX-derived prostaglandin (PG)E(2) is a potent mediator of sunburn vasodilatation, LOX-derived 15-hydroxyeicosatetraenoic acid (HETE) and its lipoxin metabolites may contribute to sunburn limitation. We explored the relationships between expression of these lipid mediators and the clinical and histological outcomes, comparing responses of individuals prone and more resistant to sunburn. An acute UVR exposure of 12 SED (standard erythema dose) was applied to buttock skin of 32 white Caucasians (n = 16 phototype I/II, n = 16 phototype III/IV), and over the subsequent 72 h assessments were made of skin erythema, immunohistochemical expression of leukocyte markers, COX-2, 12-LOX, 15-LOX and nitric oxide synthase (NOS), and eicosanoid levels by LC/ESI-MS/MS. Evidence of a significant inflammatory response was seen earlier in phototype I/II with regard to expression of erythema (4 h, p < 0.001), neutrophil infiltration (24 h, p = 0.01), epidermal COX-2 (24 h, p < 0.05) and 12-LOX (24 h, p < 0.01), and dermal eNOS (24 h, p < 0.05) proteins, although CD3+ lymphocyte infiltration showed an earlier increase in phototype III/IV (24 h, p < 0.05). Although erythema was equivalent at 72 h in both groups, phototype I/II showed higher PGE(2) accompanied by elevated 15-HETE, and a strong positive correlation was seen between these mediators (n = 18, r = 0.805, p = 0.0001). Hence anti-inflammatory eicosanoid 15-HETE may temper the pro-inflammatory milieu in sunburn, having greater influence in those prone to sunburn than those more resistant, given the same high UVR exposure conditions.


Asunto(s)
Eicosanoides/metabolismo , Quemadura Solar/metabolismo , Rayos Ultravioleta/efectos adversos , Adulto , Complejo CD3/metabolismo , Factores Quimiotácticos/metabolismo , Susceptibilidad a Enfermedades , Relación Dosis-Respuesta en la Radiación , Eicosanoides/biosíntesis , Eritema/etiología , Eritema/inmunología , Eritema/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo , Leucocitos/efectos de la radiación , Lipooxigenasa/metabolismo , Masculino , Persona de Mediana Edad , Infiltración Neutrófila/efectos de la radiación , Óxido Nítrico Sintasa/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Prostaglandinas/biosíntesis , Prostaglandinas/metabolismo , Piel/enzimología , Piel/inmunología , Piel/metabolismo , Piel/efectos de la radiación , Quemadura Solar/etiología , Quemadura Solar/inmunología , Factores de Tiempo , Adulto Joven
18.
J Mol Med (Berl) ; 100(4): 555-568, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35064792

RESUMEN

The Coronavirus disease 2019 (COVID-19) pandemic is overwhelming the healthcare systems. Identification of systemic reactions underlying COVID-19 will lead to new biomarkers and therapeutic targets for monitoring and early intervention in this viral infection. We performed targeted metabolomics covering up to 630 metabolites within several key metabolic pathways in plasma samples of 20 hospitalized COVID-19 patients and 37 matched controls. Plasma metabolic signatures specifically differentiated severe COVID-19 from control patients. The identified metabolic signatures indicated distinct alterations in both lipid and amino acid metabolisms in COVID-19 compared to control patient plasma. Systems biology-based analyses identified sphingolipid, tryptophan, tyrosine, glutamine, arginine, and arachidonic acid metabolism as mostly impacted pathways in COVID-19 patients. Notably, gamma-aminobutyric acid (GABA) was significantly reduced in COVID-19 patients and GABA plasma levels allowed for stratification of COVID-19 patients with high sensitivity and specificity. The data reveal large metabolic disturbances in COVID-19 patients and suggest use of GABA as potential biomarker and therapeutic target for the infection.


Asunto(s)
COVID-19 , Biomarcadores , Humanos , Lípidos , Metabolómica , Pandemias , Triptófano
19.
Alzheimers Res Ther ; 13(1): 71, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794997

RESUMEN

BACKGROUND: Multiple pathophysiological processes have been described in Alzheimer's disease (AD). Their inter-individual variations, complex interrelations, and relevance for clinical manifestation and disease progression remain poorly understood. We hypothesize that specific molecular patterns indicating both known and yet unidentified pathway alterations are associated with distinct aspects of AD pathology. METHODS: We performed multi-level cerebrospinal fluid (CSF) omics in a well-characterized cohort of older adults with normal cognition, mild cognitive impairment, and mild dementia. Proteomics, metabolomics, lipidomics, one-carbon metabolism, and neuroinflammation related molecules were analyzed at single-omic level with correlation and regression approaches. Multi-omics factor analysis was used to integrate all biological levels. Identified analytes were used to construct best predictive models of the presence of AD pathology and of cognitive decline with multifactorial regression analysis. Pathway enrichment analysis identified pathway alterations in AD. RESULTS: Multi-omics integration identified five major dimensions of heterogeneity explaining the variance within the cohort and differentially associated with AD. Further analysis exposed multiple interactions between single 'omics modalities and distinct multi-omics molecular signatures differentially related to amyloid pathology, neuronal injury, and tau hyperphosphorylation. Enrichment pathway analysis revealed overrepresentation of the hemostasis, immune response, and extracellular matrix signaling pathways in association with AD. Finally, combinations of four molecules improved prediction of both AD (protein 14-3-3 zeta/delta, clusterin, interleukin-15, and transgelin-2) and cognitive decline (protein 14-3-3 zeta/delta, clusterin, cholesteryl ester 27:1 16:0 and monocyte chemoattractant protein-1). CONCLUSIONS: Applying an integrative multi-omics approach we report novel molecular and pathways alterations associated with AD pathology. These findings are relevant for the development of personalized diagnosis and treatment approaches in AD.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Biomarcadores , Sistema Nervioso Central , Humanos , Fragmentos de Péptidos , Proteínas tau
20.
Nat Rev Gastroenterol Hepatol ; 18(12): 835-856, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34508238

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and is often associated with aspects of metabolic syndrome. Despite its prevalence and the importance of early diagnosis, there is a lack of robustly validated biomarkers for diagnosis, prognosis and monitoring of disease progression in response to a given treatment. In this Review, we provide an overview of the contribution of metabolomics and lipidomics in clinical studies to identify biomarkers associated with NAFLD and nonalcoholic steatohepatitis (NASH). In addition, we highlight the key metabolic pathways in NAFLD and NASH that have been identified by metabolomics and lipidomics approaches and could potentially be used as biomarkers for non-invasive diagnostic tests. Overall, the studies demonstrated alterations in amino acid metabolism and several aspects of lipid metabolism including circulating fatty acids, triglycerides, phospholipids and bile acids. Although we report several studies that identified potential biomarkers, few have been validated.


Asunto(s)
Aminoácidos/metabolismo , Ácidos y Sales Biliares/metabolismo , Metabolismo de los Lípidos , Lipidómica , Metabolómica , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Biomarcadores/metabolismo , Progresión de la Enfermedad , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Humanos , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA