Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Molecules ; 28(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37375243

RESUMEN

We report a simple and efficient strategy to enhance the fluorescence of biocompatible biindole diketonates (bdks) in the visible spectrum through difluoroboronation (BF2bdks complexes). Emission spectroscopy testifies an increase in the fluorescence quantum yields from a few percent to as much as >0.7. This massive increment is essentially independent of substitutions at the indole (-H, -Cl, and -OCH3) and corresponds to a significant stabilization of the excited state with respect to non-radiative decay mechanisms: the non-radiative decay rates are reduced by as much as an order of magnitude, from 109 s-1 to 108 s-1, upon difluoroboronation. The stabilization of the excited state is large enough to enable sizeable 1O2 photosensitized production. Different time-dependent (TD) density functional theory (DFT) methods were assessed in their ability to model the electronic properties of the compounds, with TD-B3LYP-D3 providing the most accurate excitation energies. The calculations associate the first active optical transition in both the bdks and BF2bdks electronic spectra to the S0 → S1 transition, corresponding to a shift in the electronic density from the indoles to the oxygens or the O-BF2-O unit, respectively.

2.
Environ Sci Technol ; 53(18): 10601-10611, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31412202

RESUMEN

In this paper we describe the identification of two classes of contaminants: sulfonated-PCBs and hydroxy-sulfonated-PCBs. This is the first published report of the detection of these chemicals in soil. They were found, along with hydroxy-PCBs, in soil samples coming from a site historically contaminated by the industrial production of PCBs and in background soils. Sulfonated-PCB levels were approximately 0.4-0.8% of the native PCB levels in soils and about twice the levels of hydroxy-sulfonated-PCBs and hydroxy-PCBs. The identification of sulfonated-PCBs was confirmed by the chemical synthesis of reference standards, obtained through the sulfonation of an industrial mixture of PCBs. We then reviewed the literature to investigate for the potential agents responsible for the sulfonation. Furthermore, we predicted their physicochemical properties and indicate that, given the low pKa of sulfonated- and hydroxy-sulfonated-PCBs, they possess negligible volatility, supporting the case for in situ formation from PCBs. This study shows the need of understanding their origin, their role in the degradation path of PCBs, and their fate, as well as their (still unknown) toxicological and ecotoxicological properties.


Asunto(s)
Bifenilos Policlorados , Contaminantes del Suelo , Alcanosulfonatos , Tasa de Depuración Metabólica , Suelo
3.
J Fluoresc ; 29(2): 495-504, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30859487

RESUMEN

Perimidines are a particularly versatile family of heterocyclic compounds, whose properties are exploited in several applications ranging from industrial to medicinal chemistry. The molecular structure of perimidine incorporates a well-known efficient fluorophore, i.e.: 1,8-diaminonaphthalene. The high fluorescence quantum yield shared by most naphthalene derivatives, has enabled their use as stains for bio-imaging and biophysical characterizations. However, fluorescence is dramatically depressed in perimidine as well as in the few of its derivatives analysed so far to this respect. The use of perimidine-like molecules in life sciences might be notably fostered by enhancement of their fluorescence emission. Even more excitingly, the concomitance of both biologically active moieties and a fluorophore in the same molecular structure virtually discloses application of perimidines as drug compounds in state-of-art theranostics protocols. However, somewhat surprisingly, relatively few attempts were made until now in the direction of increasing the performances of perimidines as fluorescent dyes. In this work we present the synthesis and spectroscopic characterization of four perimidine derivatives designed to this aim, two of which result to be endowed with fluorescence quantum yields comparable to 1,8-diaminonaphthalene. A rationalization for such improved behaviour has been attempted employing TD-DFT calculations, which have unravelled the interrelations among bond structure, lone pair conjugation, local electron density changes and fluorescence quantum yield.

4.
Org Biomol Chem ; 16(38): 6853-6859, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30065979

RESUMEN

A straightforward indole synthesis via annulation of C-nitrosoaromatics with conjugated terminal alkynones was realised achieving a simple, highly regioselective, atom- and step economical access to 3-aroylindoles in moderate to good yields. Further functionalizations of indole scaffolds were investigated and an easy way to JWH-018, a synthetic cannabinoid, was achieved.

5.
Chemistry ; 23(47): 11210-11215, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28675765

RESUMEN

A metal organic framework (MOF) engineered to contain in its scaffold rod-like struts featuring ultrafast molecular rotors showed extremely rapid 180 ° flip reorientation with rotational rates of 1011  Hz at 150 K. Crystal-pore accessibility of the MOF allowed the CO2 molecules to enter the cavities and control the rotor spinning speed down to 105  Hz at 150 K. Rotor dynamics, as modulated by CO2 loading/unloading in the porous crystals, was described by proton T1 and 2 H NMR spectroscopy. This strategy enabled the regulation of rotary motion by the diffusion of the gas within the channels and the determination of the energetics of rotary dynamics in the presence of CO2 .

6.
Molecules ; 19(9): 13282-304, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25170950

RESUMEN

Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.


Asunto(s)
Curcumina/análogos & derivados , Fármacos Fotosensibilizantes/química , Curcumina/química , Estabilidad de Medicamentos , Enlace de Hidrógeno , Conformación Molecular , Procesos Fotoquímicos , Teoría Cuántica , Oxígeno Singlete/química , Espectrometría de Fluorescencia , Espectrofotometría Infrarroja , Superóxidos/química
7.
Adv Mater ; 36(12): e2209907, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36735860

RESUMEN

Understanding adsorption processes at the molecular level, with multi-technique approaches, is nowadays at the frontier of porous materials research. In this work it is shown that with a proper data treatment, in situ high-resolution powder X-ray diffraction (HR-PXRD) at variable temperature and gas pressure can reveal atomic details of the accommodation sites, the framework dynamics as well as thermodynamic information (isosteric heat of adsorption) of the CO2 adsorption process in the robust iron(III) pyrazolate-based MOF Fe2(BDP)3 [H2BDP = 1,4-bis(1H-pyrazol-4-yl)benzene]. Highly reliable "HR-PXRD adsorption isotherms" can be constructed from occupancy values of CO2 molecules. The "HR-PXRD adsorption isotherms" accurately match the results of conventional static and dynamic gas sorption experiments and Monte Carlo simulations. These results are indicative of the impact of the molecular-level behavior on the bulk properties of the system under study and of the potential of the presented multi-technique approach to understand adsorption processes in metal-organic frameworks.

8.
Pharmaceutics ; 15(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37242564

RESUMEN

Meropenem is currently the most common carbapenem in clinical applications. Industrially, the final synthetic step is characterized by a heterogeneous catalytic hydrogenation in batch mode with hydrogen and Pd/C. The required high-quality standard is very difficult to meet and specific conditions are required to remove both protecting groups [i.e., p-nitrobenzyl (pNB) and p-nitrobenzyloxycarbonyl (pNZ)] simultaneously. The three-phase gas-liquid-solid system makes this step difficult and unsafe. The introduction of new technologies for small-molecule synthesis in recent years has opened up new landscapes in process chemistry. In this context, we have investigated meropenem hydrogenolysis using microwave (MW)-assisted flow chemistry for use as a new technology with industrial prospects. The reaction parameters (catalyst amount, T, P, residence time, flow rate) in the move from the batch process to semi-continuous flow were investigated under mild conditions to determine their influence on the reaction rate. The optimization of the residence time (840 s) and the number of cycles (4) allowed us to develop a novel protocol that halves the reaction time compared to batch production (14 min vs. 30 min) while maintaining the same product quality. The increase in productivity using this semi-continuous flow technique compensates for the slightly lower yield (70% vs. 74%) obtained in batch mode.

9.
J Hazard Mater ; 457: 131853, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37327608

RESUMEN

Two new classes of PCB metabolites were recently discovered: sulfonated-polychlorinated biphenyls (sulfonated-PCBs) and hydroxy-sulfonated-polychlorinated biphenyls (OH-sulfonated-PCBs). These metabolites, originating from PCB degradation, seem to possess more polar characteristics than their parent compounds. However, no other information, such as their chemical identity (CAS number) or their ecotoxicity or toxicity, is available so far, although more than about one hundred different chemicals were observed in soil samples. In addition, their physico-chemical properties are still uncertain since only estimations are available. Here we show the first evidence on the fate of these new classes of contaminants in the environment, producing results from several experiments, to evaluate sulfonated-PCBs and OH-sulfonated-PCBs soil partition coefficients, degradation in soil after 18 months of rhizoremediation, uptake into plant roots and earthworms, as well as a preliminary analytical method to extract and concentrate these chemicals from water. The results give an overview of the expected environmental fate of these chemicals and open questions for further studies.


Asunto(s)
Bifenilos Policlorados , Contaminantes del Suelo , Bifenilos Policlorados/análisis , Suelo , Bioacumulación , Contaminantes del Suelo/análisis , Alcanosulfonatos
10.
Sci Total Environ ; 882: 163445, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37076006

RESUMEN

Sulfonated-polychlorinated biphenyls (sulfonated-PCBs) are a newly discovered class of PCB metabolites. They were observed for the first time in polar bear serum and lately, in soil, together with hydroxy-sulfonated-PCBs. Their presence is ubiquitous in soils, and their estimated physical chemical properties show high mobility in water, compared to the parent compounds. However, no single pure standards exist so far and therefore their quantification in the environmental matrices is not accurate. Additionally, pure standards are needed to experimentally determine their physical chemical properties, as well as the ecotoxicological and toxicological characteristics. In the present work, the challenging goal of preparing a polychlorinated biphenyl monosulfonic acid was achieved exploring different synthetic approaches, along which the selection of the starting material resulted in a crucial point. Using PCB-153 (2,2'-4,4'-5,5'-hexachloro-1,1'-biphenyl) the synthesis afforded, as the major species, a side compound. On the contrary, the use of PCB-155 (2,2'-4,4'-6,6'-hexachloro-1,1'-biphenyl), a symmetric hexachlorobiphenyl derivative showing chlorine atoms at all the ortho positions, gave the target sulfonated-PCB compound. In this case, sulfonation was successfully carried out through a two-step procedure, involving chlorosulfonylation and the subsequent hydrolysis of the chlorosulfonyl intermediate.


Asunto(s)
Bifenilos Policlorados , Bifenilos Policlorados/análisis , Compuestos de Bifenilo , Ecotoxicología , Fenómenos Químicos
11.
Chem Mater ; 35(7): 2892-2903, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37063591

RESUMEN

Mercury is one of the most toxic heavy metals. By virtue of its triple bond, the novel ligand 1,2-bis(1H-pyrazol-4-yl)ethyne (H2BPE) was expressly designed and synthesized to devise metal-organic frameworks (MOFs) exhibiting high chemical affinity for mercury. Two MOFs, Zn(BPE) and Zn(BPE)·nDMF [interpenetrated i-Zn and noninterpenetrated ni-Zn·S, respectively; DMF = dimethylformamide], were isolated as microcrystalline powders. While i-Zn is stable in water for at least 15 days, its suspension in HgCl2 aqueous solutions prompts its conversion into HgCl2@ni-Zn. A multitechnique approach allowed us to shed light onto the observed HgCl2-triggered i-Zn-to-HgCl2@ni-Zn transformation at the molecular level. Density functional theory calculations on model systems suggested that HgCl2 interacts via the mercury atom with the carbon-carbon triple bond exclusively in ni-Zn. Powder X-ray diffraction enabled us to quantify the extent of the i-Zn-to-HgCl2@ni-Zn transition in 100-5000 ppm HgCl2 (aq) solutions, while X-ray fluorescence and inductively coupled plasma-mass spectrometry allowed us to demonstrate that HgCl2 is quantitatively sequestered from the aqueous phase. Irradiating at 365 nm, an intense fluorescence is observed at 470 nm for ni-Zn·S, which is partially quenched for i-Zn. This spectral benchmark was exploited to monitor in real time the i-Zn-to-HgCl2@ni-Zn conversion kinetics at different HgCl2 (aq) concentrations. A sizeable fluorescence increase was observed, within a 1 h time lapse, even at a concentration of 5 ppb. Overall, this comprehensive investigation unraveled an intriguing molecular mechanism, featuring the disaggregation of a water-stable MOF in the presence of HgCl2 and the self-assembly of a different crystalline phase around the pollutant, which is sequestered and simultaneously quantified by means of a luminescence change. Such a case study might open the way to new-conception strategies to achieve real-time sensing of mercury-containing pollutants in wastewaters and, eventually, pursue their straightforward and cost-effective purification.

12.
J Am Chem Soc ; 134(30): 12830-43, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22765315

RESUMEN

Two isoreticular series of pyrazolate-based 3D open metal-organic frameworks, MBDP_X, adopting the NiBDP and ZnBDP structure types [H(2)BDP = 1,4-bis(1H-pyrazol-4-yl)benzene], were synthesized with the new tagged organic linkers H(2)BDP_X (X = -NO(2), -NH(2), -OH). All of the MBDP_X materials have been characterized through a combination of techniques. IR spectroscopy proved the effective presence of tags, while X-ray powder diffraction (XRPD) witnessed their isoreticular nature. Simultaneous TG/DSC analyses (STA) demonstrated their remarkable thermal stability, while variable-temperature XRPD experiments highlighted their high degree of flexibility related to guest-induced fit processes of the solvent molecules included in the channels. A structural isomer of the parent NiBDP was obtained with a sulfonate tagged ligand, H(2)BDP_SO(3)H. Structure solution from powder diffraction data collected at three different temperatures (room temperature, 90, and 250 °C) allowed the determination of its structure and the comprehension of its solvent-related flexible behavior. Finally, the potential application of the tagged MOFs in selective adsorption processes for gas separation and purification purposes was investigated by conventional single component adsorption isotherms, as well as by advanced experiments of pulse gas chromatography and breakthrough curve measurements. Noteworthy, the results show that functionalization does not improve the adsorption selectivity (partition coefficients) for the resolution of gas mixtures characterized by similar high quadrupole moments (e.g., CO(2)/C(2)H(2)); however, the resolution of gas mixtures containing molecules with highly differentiated polarities (i.e., N(2)/CO(2) or CH(4)/CO(2)) is highly improved.

13.
J Phys Chem A ; 116(37): 9321-30, 2012 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-22934679

RESUMEN

Bis-dehydroxycurcumin carboxylic acid (K2A23) is a synthetic curcuminoid designed to exhibit enhanced water solubility and photosensitizing potential with respect to natural curcumin. In this work, the tendency of the compound to form intra- and intermolecular hydrogen bonds in the ground state is studied by UV-visible absorption and by nuclear magnetic resonance (NMR). The excited-state dynamics of the drug are probed in different environments by means of time-correlated single-photon counting measurements and related to its hydrogen bonding affinity in the excited state.


Asunto(s)
Ácidos Carboxílicos/química , Curcumina/química , Fármacos Fotosensibilizantes/química , Curcumina/análogos & derivados , Espectroscopía de Resonancia Magnética , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
14.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35890142

RESUMEN

Curcumin has been demonstrated to exhibit photosensitized bactericidal activity. However, the full exploitation of curcumin as a photo-pharmaceutical active principle is hindered by fast deactivation of the excited state through the transfer of the enol proton to the keto oxygen. Introducing an asymmetry in the molecular structure through acting on the phenyl substituents is expected to be a valuable strategy to impair this undesired de-excitation mechanism competing with the therapeutically relevant ones. In this study, two asymmetric curcumin analogs were synthesized and characterized as to their electronic-state transition spectroscopic properties. Fluorescence decay distributions were also reconstructed. Their analysis confirmed the substantial stabilization of the fluorescent state with respect to the parent compound. Nuclear magnetic resonance experiments were performed with the aim of determining the structural features of the keto-enol ring and the strength of the keto-enol hydrogen bond. Electronic structure calculations were also undertaken to elucidate the effects of substitution on the features of the keto-enol semi-aromatic system and the proneness to proton transfer. Finally, their singlet oxygen-generation efficiency was compared to that of curcumin through the 9,10-dimethylanthracene fluorescent assay.

15.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34451857

RESUMEN

The novel zinc(II) µ-oxo-bridged-dimeric complex [Zn2(µ-O)2(BMIP)2] (BMIP = 1,3-bis(5-methoxy-1-methyl-1H-indol-3-yl)propane-1,3-dione), 1, was synthetized and fully characterized. The spectral data indicate a zincoxane molecular structure, with the BMIP ligand coordinating in its neutral form via its oxygen atoms. Structural changes in 1 in dimethylsulfoxide (DMSO) were evidenced by means of spectroscopic techniques including infrared absorption and nuclear magnetic resonance, showing DMSO entrance in the coordination sphere of the metal ion. The resulting complex [Zn2(µ-O)2(BMIP)2(DMSO)], 2, readily reacts in the presence of N-methyl-imidazole (NMI), a liquid-phase nucleoside mimic, to form [Zn2(µ-O)2(BMIP)2(NMI)], 3, through DMSO displacement. The three complexes show high thermal stability, demonstrating that 1 has high affinity for hard nucleophiles. Finally, with the aim of probing the suitability of this system as model scaffold for new potential anticancer metallodrugs, the interactions of 1 with calf thymus DNA were investigated in vitro in pseudo-physiological environment through UV-Vis absorption and fluorescence emission spectroscopy, as well as time-resolved fluorescence studies. The latter analyses revealed that [Zn2(µ-O)2(BMIP)2(DMSO)] binds to DNA with high affinity upon DMSO displacement, opening new perspectives for the development of optimized drug substances.

16.
J Am Chem Soc ; 132(23): 7902-4, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20481634

RESUMEN

Two highly porous coordination polymers, containing rare octanuclear hydroxo-nickel clusters and long bis-pyrazolyl spacers, are shown to possess, after mild thermal treatment, lattice cavities up to 72% of the total crystal volume.

17.
J Vis Exp ; (155)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-32065123

RESUMEN

We introduced a regioselective and atom-economical procedure for the synthesis of 3-substituted indoles by annulation of nitrosoarenes with ethynyl ketones. The reactions were carried out achieving indoles without any catalyst and with excellent regioselectivity. No traces of 2-aroylindole products were detected. Working with 4-nitronitrosobenzene as starting material, the 3-aroyl-N-hydroxy-5-nitroindole products precipitated from the reaction mixtures and were isolated by filtration without any further purification technique. Differently from the corresponding N-hydroxy-3-aryl indoles that, spontaneously in solution, give dehydrodimerization products, the N-hydroxy-3-aroyl indoles are stable and no dimerization compounds were observed.


Asunto(s)
Reacción de Cicloadición/métodos , Catálisis , Indoles
19.
PLoS One ; 12(4): e0175225, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28448635

RESUMEN

Bis-dehydroxycurcumin tert-butyl ester (K2T23) is a derivative of the natural spice curcumin. Curcumin is widely studied for its multiple therapeutic properties, including photosensitized cytotoxicity. However, the full exploitation of curcumin phototoxic potential is hindered by the extreme instability of its excited state, caused by very efficient non radiative decay by means of transfer of the enolic proton to the nearby keto oxygen. K2T23 is designed to exhibit a tautomeric equilibrium shifted toward the diketo conformers with respect to natural curcumin. This property should endow K2T23 with superior excited-state stability when excited in the UVB band, i.e., in correspondence of the diketo conformers absorption peaks, making this compound an interesting candidate for topical photodynamic therapy of, e.g., skin tumors or oral infections. In this work, the tautomeric equilibrium of K2T23 between the keto-enolic and diketo conformers is assessed in the ground state in several organic solvents by UV-visible absorption and by nuclear magnetic resonance. The same tautomeric equilibrium is also probed in the excited-state in the same environments by means of steady-state fluorescence and time-correlated single-photon counting measurements. These techniques are also exploited to elucidate the excited state dynamics and excited-state deactivation pathways of K2T23, which are compared to those determined for several other curcuminoids characterized in previous works of ours. The ability of K2T23 in photosensitizing the production of singlet oxygen is compared with that of curcumin.


Asunto(s)
Curcumina/química , Fármacos Fotosensibilizantes/química , Ácidos Carboxílicos/química , Curcumina/análogos & derivados , Isomerismo , Fotones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA