Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 21(1): 183, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36131292

RESUMEN

BACKGROUND: Up to 80% of cases of prostate cancer present with multifocal independent tumour lesions leading to the concept of a field effect present in the normal prostate predisposing to cancer development. In the present study we applied Whole Genome DNA Sequencing (WGS) to a group of morphologically normal tissue (n = 51), including benign prostatic hyperplasia (BPH) and non-BPH samples, from men with and men without prostate cancer. We assess whether the observed genetic changes in morphologically normal tissue are linked to the development of cancer in the prostate. RESULTS: Single nucleotide variants (P = 7.0 × 10-03, Wilcoxon rank sum test) and small insertions and deletions (indels, P = 8.7 × 10-06) were significantly higher in morphologically normal samples, including BPH, from men with prostate cancer compared to those without. The presence of subclonal expansions under selective pressure, supported by a high level of mutations, were significantly associated with samples from men with prostate cancer (P = 0.035, Fisher exact test). The clonal cell fraction of normal clones was always higher than the proportion of the prostate estimated as epithelial (P = 5.94 × 10-05, paired Wilcoxon signed rank test) which, along with analysis of primary fibroblasts prepared from BPH specimens, suggests a stromal origin. Constructed phylogenies revealed lineages associated with benign tissue that were completely distinct from adjacent tumour clones, but a common lineage between BPH and non-BPH morphologically normal tissues was often observed. Compared to tumours, normal samples have significantly less single nucleotide variants (P = 3.72 × 10-09, paired Wilcoxon signed rank test), have very few rearrangements and a complete lack of copy number alterations. CONCLUSIONS: Cells within regions of morphologically normal tissue (both BPH and non-BPH) can expand under selective pressure by mechanisms that are distinct from those occurring in adjacent cancer, but that are allied to the presence of cancer. Expansions, which are probably stromal in origin, are characterised by lack of recurrent driver mutations, by almost complete absence of structural variants/copy number alterations, and mutational processes similar to malignant tissue. Our findings have implications for treatment (focal therapy) and early detection approaches.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Células Clonales/patología , Humanos , Masculino , Nucleótidos , Próstata/patología , Hiperplasia Prostática/genética , Hiperplasia Prostática/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
2.
Br J Cancer ; 124(5): 896-900, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33288843

RESUMEN

Distinguishing clinically significant from indolent prostate cancer (PC) is a major clinical challenge. We utilised targeted protein biomarker discovery approach to identify biomarkers specific for pro-metastatic PC. Serum samples from the cancer-free group; Cambridge Prognostic Group 1 (CPG1, low risk); CPG5 (high risk) and metastatic disease were analysed using Olink Proteomics panels. Tissue validation was performed by immunohistochemistry in a radical prostatectomy cohort (n = 234). We discovered that nine proteins (pleiotrophin (PTN), MK, PVRL4, EPHA2, TFPI-2, hK11, SYND1, ANGPT2, and hK14) were elevated in metastatic PC patients when compared to other groups. PTN levels were increased in serum from men with CPG5 compared to benign and CPG1. High tissue PTN level was an independent predictor of biochemical recurrence and metastatic progression in low- and intermediate-grade disease. These findings suggest that PTN may represent a novel biomarker for the presence of poor prognosis local disease with the potential to metastasise warranting further investigation.


Asunto(s)
Biomarcadores de Tumor/sangre , Proteínas Portadoras/sangre , Citocinas/sangre , Prostatectomía/mortalidad , Neoplasias de la Próstata/patología , Estudios de Seguimiento , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/cirugía , Tasa de Supervivencia
3.
N Engl J Med ; 379(15): 1416-1430, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30304655

RESUMEN

BACKGROUND: Myeloproliferative neoplasms, such as polycythemia vera, essential thrombocythemia, and myelofibrosis, are chronic hematologic cancers with varied progression rates. The genomic characterization of patients with myeloproliferative neoplasms offers the potential for personalized diagnosis, risk stratification, and treatment. METHODS: We sequenced coding exons from 69 myeloid cancer genes in patients with myeloproliferative neoplasms, comprehensively annotating driver mutations and copy-number changes. We developed a genomic classification for myeloproliferative neoplasms and multistage prognostic models for predicting outcomes in individual patients. Classification and prognostic models were validated in an external cohort. RESULTS: A total of 2035 patients were included in the analysis. A total of 33 genes had driver mutations in at least 5 patients, with mutations in JAK2, CALR, or MPL being the sole abnormality in 45% of the patients. The numbers of driver mutations increased with age and advanced disease. Driver mutations, germline polymorphisms, and demographic variables independently predicted whether patients received a diagnosis of essential thrombocythemia as compared with polycythemia vera or a diagnosis of chronic-phase disease as compared with myelofibrosis. We defined eight genomic subgroups that showed distinct clinical phenotypes, including blood counts, risk of leukemic transformation, and event-free survival. Integrating 63 clinical and genomic variables, we created prognostic models capable of generating personally tailored predictions of clinical outcomes in patients with chronic-phase myeloproliferative neoplasms and myelofibrosis. The predicted and observed outcomes correlated well in internal cross-validation of a training cohort and in an independent external cohort. Even within individual categories of existing prognostic schemas, our models substantially improved predictive accuracy. CONCLUSIONS: Comprehensive genomic characterization identified distinct genetic subgroups and provided a classification of myeloproliferative neoplasms on the basis of causal biologic mechanisms. Integration of genomic data with clinical variables enabled the personalized predictions of patients' outcomes and may support the treatment of patients with myeloproliferative neoplasms. (Funded by the Wellcome Trust and others.).


Asunto(s)
Calreticulina/genética , Janus Quinasa 2/genética , Mutación , Trastornos Mieloproliferativos/genética , Medicina de Precisión , Receptores de Trombopoyetina/genética , Teorema de Bayes , ADN de Neoplasias/análisis , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Humanos , Análisis Multivariante , Trastornos Mieloproliferativos/clasificación , Fenotipo , Pronóstico , Modelos de Riesgos Proporcionales , Análisis de Secuencia de ADN
4.
BMC Cancer ; 20(1): 469, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32450824

RESUMEN

BACKGROUND: Therapeutic targeting of the androgen signaling pathway is a mainstay treatment for prostate cancer. Although initially effective, resistance to androgen targeted therapies develops followed by disease progression to castrate-resistant prostate cancer (CRPC). Hypoxia and HIF1a have been implicated in the development of resistance to androgen targeted therapies and progression to CRCP. The interplay between the androgen and hypoxia/HIF1a signaling axes was investigated. METHODS: In vitro stable expression of HIF1a was established in the LNCaP cell line by physiological induction or retroviral transduction. Tumor xenografts with stable expression of HIF1a were established in castrated and non-castrated mouse models. Gene expression analysis identified transcriptional changes in response to androgen treatment, hypoxia and HIF1a. The binding sites of the AR and HIF transcription factors were identified using ChIP-seq. RESULTS: Androgen and HIF1a signaling promoted proliferation in vitro and enhanced tumor growth in vivo. The stable expression of HIF1a in vivo restored tumor growth in the absence of endogenous androgens. Hypoxia reduced AR binding sites whereas HIF binding sites were increased with androgen treatment under hypoxia. Gene expression analysis identified seven genes that were upregulated both by AR and HIF1a, of which six were prognostic. CONCLUSIONS: The oncogenic AR, hypoxia and HIF1a pathways support prostate cancer development through independent signaling pathways and transcriptomic profiles. AR and hypoxia/HIF1a signaling pathways independently promote prostate cancer progression and therapeutic targeting of both pathways simultaneously is warranted.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Andrógenos/metabolismo , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Perfilación de la Expresión Génica , Humanos , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Transducción de Señal , Activación Transcripcional , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
PLoS Genet ; 13(9): e1007001, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28945760

RESUMEN

A variety of models have been proposed to explain regions of recurrent somatic copy number alteration (SCNA) in human cancer. Our study employs Whole Genome DNA Sequence (WGS) data from tumor samples (n = 103) to comprehensively assess the role of the Knudson two hit genetic model in SCNA generation in prostate cancer. 64 recurrent regions of loss and gain were detected, of which 28 were novel, including regions of loss with more than 15% frequency at Chr4p15.2-p15.1 (15.53%), Chr6q27 (16.50%) and Chr18q12.3 (17.48%). Comprehensive mutation screens of genes, lincRNA encoding sequences, control regions and conserved domains within SCNAs demonstrated that a two-hit genetic model was supported in only a minor proportion of recurrent SCNA losses examined (15/40). We found that recurrent breakpoints and regions of inversion often occur within Knudson model SCNAs, leading to the identification of ZNF292 as a target gene for the deletion at 6q14.3-q15 and NKX3.1 as a two-hit target at 8p21.3-p21.2. The importance of alterations of lincRNA sequences was illustrated by the identification of a novel mutational hotspot at the KCCAT42, FENDRR, CAT1886 and STCAT2 loci at the 16q23.1-q24.3 loss. Our data confirm that the burden of SCNAs is predictive of biochemical recurrence, define nine individual regions that are associated with relapse, and highlight the possible importance of ion channel and G-protein coupled-receptor (GPCR) pathways in cancer development. We concluded that a two-hit genetic model accounts for about one third of SCNA indicating that mechanisms, such haploinsufficiency and epigenetic inactivation, account for the remaining SCNA losses.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , Análisis de Secuencia de ADN , Alelos , Genoma Humano , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Eliminación de Secuencia
6.
EMBO J ; 33(12): 1365-82, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24837709

RESUMEN

Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.


Asunto(s)
Arrestinas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Neoplasias de la Próstata/fisiopatología , Inmunoprecipitación de Cromatina , Técnica del Anticuerpo Fluorescente , Fumarato Hidratasa/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Humanos , Immunoblotting , Inmunohistoquímica , Espectroscopía de Resonancia Magnética , Masculino , Metabolómica , Neoplasias de la Próstata/metabolismo , Interferencia de ARN , Succinato Deshidrogenasa/metabolismo , Análisis de Matrices Tisulares , beta-Arrestina 1 , beta-Arrestinas
8.
Genes Dev ; 24(2): 171-82, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20080953

RESUMEN

Retinoic acid receptor-alpha (RAR alpha) is a known estrogen target gene in breast cancer cells. The consequence of RAR alpha induction by estrogen was previously unknown. We now show that RAR alpha is required for efficient estrogen receptor-alpha (ER)-mediated transcription and cell proliferation. RAR alpha can interact with ER-binding sites, but this occurs in an ER-dependent manner, providing a novel role for RAR alpha that is independent of its classic role. We show, on a genome-wide scale, that RAR alpha and ER can co-occupy regulatory regions together within the chromatin. This transcriptionally active co-occupancy and dependency occurs when exposed to the predominant breast cancer hormone, estrogen--an interaction that is promoted by the estrogen-ER induction of RAR alpha. These findings implicate RAR alpha as an essential component of the ER complex, potentially by maintaining ER-cofactor interactions, and suggest that different nuclear receptors can cooperate for effective transcriptional activity in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Ácido Retinoico/metabolismo , ADN/metabolismo , Estrógenos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ligandos , Unión Proteica
9.
Proc Natl Acad Sci U S A ; 111(42): 15190-5, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288776

RESUMEN

Cancers result from the accumulation of genetic lesions, but the cellular consequences of driver mutations remain unclear, especially during the earliest stages of malignancy. The V617F mutation in the JAK2 non-receptor tyrosine kinase (JAK2V617F) is present as an early somatic event in most patients with myeloproliferative neoplasms (MPNs), and the study of these chronic myeloid malignancies provides an experimentally tractable approach to understanding early tumorigenesis. Introduction of exogenous JAK2V617F impairs replication fork progression and is associated with activation of the intra-S checkpoint, with both effects mediated by phosphatidylinositide 3-kinase (PI3K) signaling. Analysis of clonally derived JAK2V617F-positive erythroblasts from MPN patients also demonstrated impaired replication fork progression accompanied by increased levels of replication protein A (RPA)-containing foci. However, the associated intra-S checkpoint response was impaired in erythroblasts from polycythemia vera (PV) patients, but not in those from essential thrombocythemia (ET) patients. Moreover, inhibition of p53 in PV erythroblasts resulted in more gamma-H2Ax (γ-H2Ax)-marked double-stranded breaks compared with in like-treated ET erythroblasts, suggesting the defective intra-S checkpoint function seen in PV increases DNA damage in the context of attenuated p53 signaling. These results demonstrate oncogene-induced impairment of replication fork progression in primary cells from MPN patients, reveal unexpected disease-restricted differences in activation of the intra-S checkpoint, and have potential implications for the clonal evolution of malignancies.


Asunto(s)
Puntos de Control del Ciclo Celular , Replicación del ADN , Janus Quinasa 2/fisiología , Fase S , Apoptosis , División Celular , Cromosomas/metabolismo , Cromosomas/ultraestructura , Daño del ADN , Reparación del ADN , Diploidia , Fibroblastos/metabolismo , Genotipo , Enfermedades Hematológicas/genética , Humanos , Janus Quinasa 2/genética , Leucemia/metabolismo , Leucemia/patología , Microscopía Fluorescente , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patología , Fosforilación , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
10.
J Pathol ; 236(4): 517-30, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25875424

RESUMEN

Metabolic adaptation is considered an emerging hallmark of cancer, whereby cancer cells exhibit high rates of glucose consumption with consequent lactate production. To ensure rapid efflux of lactate, most cancer cells express high levels of monocarboxylate transporters (MCTs), which therefore may constitute suitable therapeutic targets. The impact of MCT inhibition, along with the clinical impact of altered cellular metabolism during prostate cancer (PCa) initiation and progression, has not been described. Using a large cohort of human prostate tissues of different grades, in silico data, in vitro and ex vivo studies, we demonstrate the metabolic heterogeneity of PCa and its clinical relevance. We show an increased glycolytic phenotype in advanced stages of PCa and its correlation with poor prognosis. Finally, we present evidence supporting MCTs as suitable targets in PCa, affecting not only cancer cell proliferation and survival but also the expression of a number of hypoxia-inducible factor target genes associated with poor prognosis. Herein, we suggest that patients with highly glycolytic tumours have poorer outcome, supporting the notion of targeting glycolytic tumour cells in prostate cancer through the use of MCT inhibitors.


Asunto(s)
Glucólisis , Ácido Láctico/metabolismo , Terapia Molecular Dirigida , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Diseño de Fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Transgénicos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/genética , Estadificación de Neoplasias , Fenotipo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Interferencia de ARN , Factores de Tiempo , Transfección , Carga Tumoral
11.
Nucleic Acids Res ; 42(10): 6256-69, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24753418

RESUMEN

In prostate cancer (PC), the androgen receptor (AR) is a key transcription factor at all disease stages, including the advanced stage of castrate-resistant prostate cancer (CRPC). In the present study, we show that GABPα, an ETS factor that is up-regulated in PC, is an AR-interacting transcription factor. Expression of GABPα enables PC cell lines to acquire some of the molecular and cellular characteristics of CRPC tissues as well as more aggressive growth phenotypes. GABPα has a transcriptional role that dissects the overlapping cistromes of the two most common ETS gene fusions in PC: overlapping significantly with ETV1 but not with ERG target genes. GABPα bound predominantly to gene promoters, regulated the expression of one-third of AR target genes and modulated sensitivity to AR antagonists in hormone responsive and castrate resistant PC models. This study supports a critical role for GABPα in CRPC and reveals potential targets for therapeutic intervention.


Asunto(s)
Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Neoplasias de la Próstata/genética , Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos/farmacología , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fenotipo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transducción de Señal , Transcripción Genética
12.
Cancer Cell ; 12(6): 514-27, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18068629

RESUMEN

The extracellular matrix (ECM) can induce chemotherapy resistance via AKT-mediated inhibition of apoptosis. Here, we show that loss of the ECM protein TGFBI (transforming growth factor beta induced) is sufficient to induce specific resistance to paclitaxel and mitotic spindle abnormalities in ovarian cancer cells. Paclitaxel-resistant cells treated with recombinant TGFBI protein show integrin-dependent restoration of paclitaxel sensitivity via FAK- and Rho-dependent stabilization of microtubules. Immunohistochemical staining for TGFBI in paclitaxel-treated ovarian cancers from a prospective clinical trial showed that morphological changes of paclitaxel-induced cytotoxicity were restricted to areas of strong expression of TGFBI. These data show that ECM can mediate taxane sensitivity by modulating microtubule stability.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Antineoplásicos Fitogénicos/farmacología , Adhesión Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Centrosoma/efectos de los fármacos , Centrosoma/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de la Matriz Extracelular/deficiencia , Femenino , Fibronectinas/metabolismo , Silenciador del Gen/efectos de los fármacos , Humanos , Integrinas/metabolismo , Mitosis/efectos de los fármacos , Modelos Biológicos , Neoplasias Ováricas/patología , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Factor de Crecimiento Transformador beta/deficiencia , Tubulina (Proteína)/metabolismo
13.
BJU Int ; 113(3): 358-66, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24053777

RESUMEN

The androgen receptor (AR) is essential for normal prostate and prostate cancer cell growth. AR transcriptional activity is almost always maintained even in hormone relapsed prostate cancer (HRPC) in the absence of normal levels of circulating testosterone. Current molecular techniques, such as chromatin-immunoprecipitation sequencing (ChIP-seq), have permitted identification of direct AR-binding sites in cell lines and human tissue with a distinct coordinate network evident in HRPC. The effectiveness of novel agents, such as abiraterone acetate (suppresses adrenal androgens) or enzalutamide (MDV3100, potent AR antagonist), in treating advanced prostate cancer underlines the on-going critical role of the AR throughout all stages of the disease. Persistent AR activity in advanced disease regulates cell cycle activity, steroid biosynthesis and anabolic metabolism in conjunction with regulatory co-factors, such as the E2F family, c-Myc and signal transducer and activator of transcription (STAT) transcription factors. Further treatment approaches must target these other factors.


Asunto(s)
Neoplasias de la Próstata/genética , Receptores Androgénicos/fisiología , Antagonistas de Receptores Androgénicos/uso terapéutico , Humanos , Masculino , Próstata/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/química , Receptores Androgénicos/genética , Transcripción Genética/genética , Transcripción Genética/fisiología
15.
Cell Genom ; 4(3): 100511, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38428419

RESUMEN

The development of cancer is an evolutionary process involving the sequential acquisition of genetic alterations that disrupt normal biological processes, enabling tumor cells to rapidly proliferate and eventually invade and metastasize to other tissues. We investigated the genomic evolution of prostate cancer through the application of three separate classification methods, each designed to investigate a different aspect of tumor evolution. Integrating the results revealed the existence of two distinct types of prostate cancer that arise from divergent evolutionary trajectories, designated as the Canonical and Alternative evolutionary disease types. We therefore propose the evotype model for prostate cancer evolution wherein Alternative-evotype tumors diverge from those of the Canonical-evotype through the stochastic accumulation of genetic alterations associated with disruptions to androgen receptor DNA binding. Our model unifies many previous molecular observations, providing a powerful new framework to investigate prostate cancer disease progression.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Próstata/metabolismo , Mutación , Genómica , Evolución Molecular
16.
Eur Urol Oncol ; 5(4): 412-419, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35450835

RESUMEN

BACKGROUND: Bacteria play a suspected role in the development of several cancer types, and associations between the presence of particular bacteria and prostate cancer have been reported. OBJECTIVE: To provide improved characterisation of the prostate and urine microbiome and to investigate the prognostic potential of the bacteria present. DESIGN, SETTING, AND PARTICIPANTS: Microbiome profiles were interrogated in sample collections of patient urine (sediment microscopy: n = 318, 16S ribosomal amplicon sequencing: n = 46; and extracellular vesicle RNA-seq: n = 40) and cancer tissue (n = 204). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Microbiomes were assessed using anaerobic culture, population-level 16S analysis, RNA-seq, and whole genome DNA sequencing. RESULTS AND LIMITATIONS: We demonstrate an association between the presence of bacteria in urine sediments and higher D'Amico risk prostate cancer (discovery, n = 215 patients, p < 0.001; validation, n = 103, p < 0.001, χ2 test for trend). Characterisation of the bacterial community led to the (1) identification of four novel bacteria (Porphyromonas sp. nov., Varibaculum sp. nov., Peptoniphilus sp. nov., and Fenollaria sp. nov.) that were frequently found in patient urine, and (2) definition of a patient subgroup associated with metastasis development (p = 0.015, log-rank test). The presence of five specific anaerobic genera, which includes three of the novel isolates, was associated with cancer risk group, in urine sediment (p = 0.045, log-rank test), urine extracellular vesicles (p = 0.039), and cancer tissue (p = 0.035), with a meta-analysis hazard ratio for disease progression of 2.60 (95% confidence interval: 1.39-4.85; p = 0.003; Cox regression). A limitation is that functional links to cancer development are not yet established. CONCLUSIONS: This study characterises prostate and urine microbiomes, and indicates that specific anaerobic bacteria genera have prognostic potential. PATIENT SUMMARY: In this study, we investigated the presence of bacteria in patient urine and the prostate. We identified four novel bacteria and suggest a potential prognostic utility for the microbiome in prostate cancer.


Asunto(s)
Microbiota , Neoplasias de la Próstata , Bacterias/genética , Humanos , Masculino , Microbiota/genética , Próstata/patología , Neoplasias de la Próstata/patología , ARN Ribosómico 16S/genética
17.
Eur Urol ; 82(2): 201-211, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35659150

RESUMEN

BACKGROUND: Germline variants explain more than a third of prostate cancer (PrCa) risk, but very few associations have been identified between heritable factors and clinical progression. OBJECTIVE: To find rare germline variants that predict time to biochemical recurrence (BCR) after radical treatment in men with PrCa and understand the genetic factors associated with such progression. DESIGN, SETTING, AND PARTICIPANTS: Whole-genome sequencing data from blood DNA were analysed for 850 PrCa patients with radical treatment from the Pan Prostate Cancer Group (PPCG) consortium from the UK, Canada, Germany, Australia, and France. Findings were validated using 383 patients from The Cancer Genome Atlas (TCGA) dataset. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: A total of 15,822 rare (MAF <1%) predicted-deleterious coding germline mutations were identified. Optimal multifactor and univariate Cox regression models were built to predict time to BCR after radical treatment, using germline variants grouped by functionally annotated gene sets. Models were tested for robustness using bootstrap resampling. RESULTS AND LIMITATIONS: Optimal Cox regression multifactor models showed that rare predicted-deleterious germline variants in "Hallmark" gene sets were consistently associated with altered time to BCR. Three gene sets had a statistically significant association with risk-elevated outcome when modelling all samples: PI3K/AKT/mTOR, Inflammatory response, and KRAS signalling (up). PI3K/AKT/mTOR and KRAS signalling (up) were also associated among patients with higher-grade cancer, as were Pancreas-beta cells, TNFA signalling via NKFB, and Hypoxia, the latter of which was validated in the independent TCGA dataset. CONCLUSIONS: We demonstrate for the first time that rare deleterious coding germline variants robustly associate with time to BCR after radical treatment, including cohort-independent validation. Our findings suggest that germline testing at diagnosis could aid clinical decisions by stratifying patients for differential clinical management. PATIENT SUMMARY: Prostate cancer patients with particular genetic mutations have a higher chance of relapsing after initial radical treatment, potentially providing opportunities to identify patients who might need additional treatments earlier.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Neoplasias de la Próstata , Células Germinativas , Mutación de Línea Germinal , Humanos , Masculino , Recurrencia Local de Neoplasia/genética , Fosfatidilinositol 3-Quinasas/genética , Prostatectomía , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/terapia , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Serina-Treonina Quinasas TOR
18.
Nat Commun ; 13(1): 7830, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539415

RESUMEN

Metabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we integrate multimodal analyses of primary and metastatic clonally-related clear cell renal cancer cells (ccRCC) grown in physiological media to identify key stage-specific metabolic vulnerabilities. We show that a VHL loss-dependent reprogramming of branched-chain amino acid catabolism sustains the de novo biosynthesis of aspartate and arginine enabling tumor cells with the flexibility of partitioning the nitrogen of the amino acids depending on their needs. Importantly, we identify the epigenetic reactivation of argininosuccinate synthase (ASS1), a urea cycle enzyme suppressed in primary ccRCC, as a crucial event for metastatic renal cancer cells to acquire the capability to generate arginine, invade in vitro and metastasize in vivo. Overall, our study uncovers a mechanism of metabolic flexibility occurring during ccRCC progression, paving the way for the development of novel stage-specific therapies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Aminoácidos de Cadena Ramificada , Nitrógeno , Neoplasias Renales/genética , Arginina/metabolismo , Línea Celular Tumoral
19.
Cell Rep ; 37(12): 110132, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34936871

RESUMEN

The prostate gland produces prostatic fluid, high in zinc and citrate and essential for the maintenance of spermatozoa. Prostate cancer is a common condition with limited treatment efficacy in castration-resistant metastatic disease, including with immune checkpoint inhibitors. Using single-cell RNA-sequencing to perform an unbiased assessment of the cellular landscape of human prostate, we identify a subset of tumor-enriched androgen receptor-negative luminal epithelial cells with increased expression of cancer-associated genes. We also find a variety of innate and adaptive immune cells in normal prostate that were transcriptionally perturbed in prostate cancer. An exception is a prostate-specific, zinc transporter-expressing macrophage population (MAC-MT) that contributes to tissue zinc accumulation in homeostasis but shows enhanced inflammatory gene expression in tumors, including T cell-recruiting chemokines. Remarkably, enrichment of the MAC-MT signature in cancer biopsies is associated with improved disease-free survival, suggesting beneficial antitumor functions.


Asunto(s)
Células Epiteliales/metabolismo , Macrófagos/metabolismo , Próstata/inmunología , Próstata/metabolismo , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/metabolismo , Transcriptoma , Anciano , Animales , Células Epiteliales/inmunología , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , RNA-Seq , Receptores Androgénicos/metabolismo , Análisis de la Célula Individual/métodos , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA