Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(29): 73612-73627, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37191750

RESUMEN

Several phytoremediation strategies have been undertaken to alleviate cadmium (Cd)-mediated injury to crop yield resulting from agricultural land pollution. In the present study, the potentially beneficial effect of melatonin (Me) was appraised. Therefore, chickpea (Cicer arietinum L.) seeds were imbibed for 12 H in distilled water or Me (10 µM) solution. Then, the seeds germinated in the presence or the absence of 200 µM CdCl2 for 6 days. Seedlings obtained from Me-pretreated seeds exhibited enhanced growth traits, reflected by fresh biomass and length increase. This beneficial effect was associated with a decreased Cd accumulation in seedling tissues (by 46 and 89% in roots and shoots, respectively). Besides, Me efficiently protected the cell membrane integrity of Cd-subjected seedlings. This protective effect was manifested by the decreased lipoxygenase activity and the subsequently reduced accumulation of 4-hydroxy-2-nonenal. Melatonin counteracted the Cd-mediated stimulation of the pro-oxidant NADPH-oxidase (90 and 45% decrease compared to non-pretreated Cd-stressed roots and shoots, respectively) and NADH-oxidase activities (almost 40% decrease compared to non-pretreated roots and shoots), preventing, thus, hydrogen peroxide overaccumulation (50 and 35% lesser than non-pretreated roots and shoots, respectively). Furthermore, Me enhanced the cellular content of pyridine nicotinamide reduced forms [NAD(P)H] and their redox state. This effect was associated with the Me-mediated stimulation of the glucose-6-phosphate dehydrogenase (G6PDH) and malate dehydrogenase activities, concomitantly with the inhibition of NAD(P)H-consuming activities. These effects were accompanied by the up-regulation of G6PDH gene expression (45% increase in roots) and the down-regulation of the respiratory burst oxidase homolog protein F (RBOHF) gene expression (53% decrease in roots and shoots). Likewise, Me induced an increased activity and gene transcription of the Asada-Halliwell cycle, namely ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, concomitantly with a reduction of the glutathione peroxidase activity. This modulating effect led to the restoration of the redox homeostasis of the ascorbate and the glutathione pools. Overall, current results attest that seed pretreatment with Me is effective in Cd stress relief and can be a beneficial crop-protective approach.


Asunto(s)
Cicer , Melatonina , Antioxidantes/metabolismo , Plantones , Melatonina/metabolismo , Cadmio/metabolismo , Cicer/metabolismo , NAD/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Homeostasis , Semillas/metabolismo , Expresión Génica
2.
Protoplasma ; 258(4): 849-861, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33432416

RESUMEN

In the aim to estimate the protective role of calcium (Ca) and ethylene glycol tetraacetic acid (EGTA) against cadmium (Cd)-induced damage, chickpea (Cicer arietinum L.) seeds were exposed to 200 µM Cd stress for 6 days or 3 days then subjected to co-treatment of the metal with either 100 mM CaCl2 or 100 µM EGTA for 3 additional days. The addition of Ca and EGTA improved seedling growth. This protecting effect was correlated to the alleviation of the metal-induced oxidative stress, exemplified by the reduction of hydrogen peroxide (H2O2) contents. Besides, Ca and EGTA stimulated thioredoxin (Trx) and thioredoxin reductase (NTR) activities (2.75- and 1.75-fold increase when compared to Cd-stressed, respectively) protecting, thereby, protein -SH groups from the Cd-mediated oxidation, and modulated ferredoxin (Fdx) activity to a control level. Moreover, Ca and EGTA reinstated the glutathione redox steady state, mainly via preserving a high level of glutathione reduced form (GSH). This effect coincided with the maintaining of the Cd-stimulated glutathione reductase (GR) activity and the decline of glutathione peroxidase (GPX, 43% lower than Cd-stressed shoots) activity. Ca and EGTA counteracted the inhibitory effect of Cd on the activity and gene expression of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) isoenzyme and modulated the activities of catalase (CAT) and ascorbate peroxidase (APX). Overall, our results provided evidence that Ca and EGTA supplement could be a promising approach in the remediation of Cd-contaminated environment.


Asunto(s)
Cadmio , Cicer , Contaminantes del Suelo/toxicidad , Antioxidantes/metabolismo , Cadmio/toxicidad , Calcio , Catalasa/metabolismo , Cicer/genética , Cicer/metabolismo , Ácido Egtácico , Expresión Génica , Glutatión/metabolismo , Peróxido de Hidrógeno , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA