Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 74: 29-39, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28847745

RESUMEN

ESCRT (Endosomal Sorting Complex Required for Transport) proteins have been shown to control an increasing number of membrane-associated processes. Some of these, and prominently regulation of receptor trafficking, profoundly shape signal transduction. Evidence in fungi, plants and multiple animal models support the emerging concept that ESCRTs are main actors in coordination of signaling with the changes in cells and tissues occurring during development and homeostasis. Consistent with their pleiotropic function, ESCRTs are regulated in multiple ways to tailor signaling to developmental and homeostatic needs. ESCRT activity is crucial to correct execution of developmental programs, especially at key transitions, allowing eukaryotes to thrive and preventing appearance of congenital defects.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Transducción de Señal , Animales , Transporte Biológico , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Sistema Nervioso Central/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Humanos , Transducción de Señal/genética
2.
EMBO J ; 35(20): 2223-2237, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27647876

RESUMEN

The kinetochore is an essential structure that mediates accurate chromosome segregation in mitosis and meiosis. While many of the kinetochore components have been identified, the mechanisms of kinetochore assembly remain elusive. Here, we identify a novel role for Snap29, an unconventional SNARE, in promoting kinetochore assembly during mitosis in Drosophila and human cells. Snap29 localizes to the outer kinetochore and prevents chromosome mis-segregation and the formation of cells with fragmented nuclei. Snap29 promotes accurate chromosome segregation by mediating the recruitment of Knl1 at the kinetochore and ensuring stable microtubule attachments. Correct Knl1 localization to kinetochore requires human or Drosophila Snap29, and is prevented by a Snap29 point mutant that blocks Snap29 release from SNARE fusion complexes. Such mutant causes ectopic Knl1 recruitment to trafficking compartments. We propose that part of the outer kinetochore is functionally similar to membrane fusion interfaces.


Asunto(s)
Proteínas de Drosophila/metabolismo , Cinetocoros/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas SNARE/metabolismo , Animales , Línea Celular , Drosophila , Proteínas de Drosophila/genética , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Proteínas SNARE/genética
3.
Sci Rep ; 9(1): 1211, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718891

RESUMEN

Homozygous mutations in SNAP29, encoding a SNARE protein mainly involved in membrane fusion, cause CEDNIK (Cerebral Dysgenesis, Neuropathy, Ichthyosis and Keratoderma), a rare congenital neurocutaneous syndrome associated with short life expectancy, whose pathogenesis is unclear. Here, we report the analysis of the first genetic model of CEDNIK in zebrafish. Strikingly, homozygous snap29 mutant larvae display CEDNIK-like features, such as microcephaly and skin defects. Consistent with Snap29 role in membrane fusion during autophagy, we observe accumulation of the autophagy markers p62 and LC3, and formation of aberrant multilamellar organelles and mitochondria. Importantly, we find high levels of apoptotic cell death during early development that might play a yet uncharacterized role in CEDNIK pathogenesis. Mutant larvae also display mouth opening problems, feeding impairment and swimming difficulties. These alterations correlate with defective trigeminal nerve formation and excess axonal branching. Since the paralog Snap25 is known to promote axonal branching, Snap29 might act in opposition with, or modulate Snap25 activity during neurodevelopment. Our vertebrate genetic model of CEDNIK extends the description in vivo of the multisystem defects due to loss of Snap29 and could provide the base to test compounds that might ameliorate traits of the disease.


Asunto(s)
Queratodermia Palmoplantar/metabolismo , Síndromes Neurocutáneos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Autofagia , Humanos , Queratodermia Palmoplantar/genética , Queratodermia Palmoplantar/fisiopatología , Fusión de Membrana , Modelos Genéticos , Mutación , Malformaciones del Sistema Nervioso/metabolismo , Síndromes Neurocutáneos/genética , Síndromes Neurocutáneos/fisiopatología , Fenotipo , Unión Proteica , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas SNARE/fisiología , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteína 25 Asociada a Sinaptosomas/fisiología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología
4.
Cell Stress ; 2(4): 72-81, 2018 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-31225470

RESUMEN

Despite extensive study, regulation of membrane trafficking is incompletely understood. In particular, the specific role of SNARE (Soluble NSF Attachment REceptor) proteins for distinct trafficking steps and their mechanism of action, beyond the core function in membrane fusion, are still elusive. Snap29 is a SNARE protein related to Snap25 that gathered a lot of attention in recent years. Here, we review the study of Snap29 and its emerging involvement in autophagy, a self eating process that is key to cell adaptation to changing environments, and in other trafficking pathways. We also discuss Snap29 role in synaptic transmission and in cell division, which might extend the repertoire of SNARE-mediated functions. Finally, we present evidence connecting Snap29 to human disease, highlighting the importance of Snap29 function in tissue development and homeostasis.

5.
Autophagy ; 10(12): 2251-68, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25551675

RESUMEN

How autophagic degradation is linked to endosomal trafficking routes is little known. Here we screened a collection of uncharacterized Drosophila mutants affecting membrane transport to identify new genes that also have a role in autophagy. We isolated a loss of function mutant in Snap29 (Synaptosomal-associated protein 29 kDa), the gene encoding the Drosophila homolog of the human protein SNAP29 and have characterized its function in vivo. Snap29 contains 2 soluble NSF attachment protein receptor (SNARE) domains and a asparagine-proline-phenylalanine (NPF motif) at its N terminus and rescue experiments indicate that both SNARE domains are required for function, whereas the NPF motif is in part dispensable. We find that Snap29 interacts with SNARE proteins, localizes to multiple trafficking organelles, and is required for protein trafficking and for proper Golgi apparatus morphology. Developing tissue lacking Snap29 displays distinctive epithelial architecture defects and accumulates large amounts of autophagosomes, highlighting a major role of Snap29 in autophagy and secretion. Mutants for autophagy genes do not display epithelial architecture or secretion defects, suggesting that the these alterations of the Snap29 mutant are unlikely to be caused by the impairment of autophagy. In contrast, we find evidence of elevated levels of hop-Stat92E (hopscotch-signal transducer and activator of transcription protein at 92E) ligand, receptor, and associated signaling, which might underlie the epithelial defects. In summary, our findings support a role of Snap29 at key steps of membrane trafficking, and predict that signaling defects may contribute to the pathogenesis of cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma (CEDNIK), a human congenital syndrome due to loss of Snap29.


Asunto(s)
Autofagia/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fagosomas/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas SNARE/metabolismo , Animales , Movimiento Celular/fisiología , Endosomas/metabolismo , Exosomas/metabolismo , Humanos , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA