Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Exp Dermatol ; 32(6): 808-821, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843338

RESUMEN

Sebum is a lipid-rich mixture secreted by the sebaceous gland (SG) onto the skin surface. By penetrating through the epidermis, sebum may be involved in the regulation of epidermal and dermal cells in both healthy and diseased skin conditions. Saturated and monounsaturated fatty acids (FAs), found as free FAs (FFAs) and in bound form in neutral lipids, are essential constituents of sebum and key players of the inflammatory processes occurring in the pilosebaceous unit in acne-prone skin. Little is known on the interplay among uptake of saturated FFAs, their biotransformation, and induction of proinflammatory cytokines in sebocytes. In the human SG, palmitate (C16:0) is the precursor of sapienate (C16:1n-10) formed by insertion of a double bond (DB) at the Δ6 position catalysed by the fatty acid desaturase 2 (FADS2) enzyme. Conversely, palmitoleate (C16:1n-7) is formed by insertion of a DB at the Δ9 position catalysed by the stearoyl coenzyme A desaturase 1 (SCD1) enzyme. Other FFAs processed in the SG, also undergo these main desaturation pathways. We investigated lipogenesis and release of IL-6 and IL-8 pro-inflammatory cytokines in SZ95 sebocytes in vitro after treatment with saturated FFAs, that is, C16:0, margarate (C17:0), and stearate (C18:0) with or without specific inhibitors of SCD1 and FADS2 desaturase enzymes, and a drug with mixed inhibitory effects on FADS1 and FADS2 activities. C16:0 underwent extended desaturation through both SCD1 and FADS2 catalysed pathways and displayed the strongest lipoinflammatory effects. Inhibition of desaturation pathways proved to enhance lipoinflammation induced by SFAs in SZ95 sebocytes. Palmitate (C16:0), margarate (C17:0), and stearate (C18:0) are saturated fatty acids that induce different arrays of neutral lipids (triglycerides) and dissimilar grades of inflammation in sebocytes.


Asunto(s)
Ácidos Grasos , Estearatos , Humanos , Ácidos Grasos/metabolismo , Estearatos/metabolismo , Glándulas Sebáceas/metabolismo , Citocinas/metabolismo , Palmitatos/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Ácido Graso Desaturasas/metabolismo
2.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203435

RESUMEN

Glucocorticoids (GCs) are commonly used in the treatment of inflammatory skin diseases, although the balance between therapeutic benefits and side effects is still crucial in clinical practice. One of the major and well-known adverse effects of topical GCs is cutaneous atrophy, which seems to be related to the activation of the glucorticoid receptor (GR) genomic pathway. Dissociating anti-inflammatory activity from atrophogenicity represents an important goal to achieve, in order to avoid side effects on keratinocytes and fibroblasts, known target cells of GC action. To this end, we evaluated the biological activity and safety profile of two novel chemical compounds, DE.303 and KL.202, developed as non-transcriptionally acting GR ligands. In primary keratinocytes, both compounds demonstrated anti-inflammatory properties inhibiting NF-κB activity, downregulating inflammatory cytokine release and interfering with pivotal signaling pathways involved in the inflammatory process. Of note, these beneficial actions were not associated with GC-related atrophic effects: treatments of primary keratinocytes and fibroblasts with DE.303 and KL.202 did not induce, contrarily to dexamethasone-a known potent GC-alterations in extracellular matrix components and lipid synthesis, thus confirming their safety profile. These data provide the basis for evaluating these compounds as effective alternatives to the currently used GCs in managing inflammatory skin diseases.


Asunto(s)
Dermatitis , Receptores de Glucocorticoides , Humanos , Piel , Antiinflamatorios/efectos adversos , Queratinocitos , Glucocorticoides/efectos adversos , Dermatitis/tratamiento farmacológico , Dermatitis/etiología , Atrofia
3.
FASEB J ; 34(5): 6302-6321, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32157742

RESUMEN

Bovine colostrum, the first milk secreted by the mammary glands of cows shortly after they have given birth, provides a natural source of bioactive substances helpful to promote tissue development and repair, and to maintain a healthy immune system. Owing to its properties, the use of colostrum in the treatment of human diseases is under investigation. We evaluated the biological activity of colostrum on human primary keratinocytes, focusing on its effects with regard to a proliferation/differentiation balance. Using cellular and molecular approaches, we showed that colostrum favors a cell cycle withdrawal by increasing the expression of p21/WAF1 and p27/KIP1. It also promotes the transition of keratinocytes from a proliferating to a differentiating state, as assessed by a decrease in keratin 5 and an increase in keratin 16. We demonstrated the ability of colostrum to induce the expression of early and late differentiation markers (keratin 1, involucrin, and filaggrin) and the synthesis of caspase 14 and bleomycin hydrolase, the two main enzymes involved in filaggrin maturation. Moreover, we showed that bovine colostrum is able to promote keratinocyte stratification and terminal differentiation not only in two-dimensional (2D), but also in a more physiological system of three-dimensional (3D) skin equivalents. Finally, we demonstrated that colostrum stimulates cell differentiation through the PI3K/PLC-γ1/PKCα pathways mainly associated to tyrosine kinase receptors. These results suggest the possibility to benefit from colostrum properties for the treatment of skin diseases characterized by altered differentiation and perturbed barrier function.


Asunto(s)
Diferenciación Celular , Calostro/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Queratinocitos/citología , Piel/citología , Animales , Bovinos , Células Cultivadas , Femenino , Proteínas Filagrina , Humanos , Queratinocitos/metabolismo , Embarazo , Piel/metabolismo
4.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34299118

RESUMEN

The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor expressed in all skin cell types, plays a key role in physiological and pathological processes. Several studies have shown that this receptor is involved in the prevention of inflammatory skin diseases, e.g., psoriasis, atopic dermatitis, representing a potential therapeutic target. We tested the safety profile and the biological activity of NPD-0614-13 and NPD-0614-24, two new synthetic AhR ligands structurally related to the natural agonist FICZ, known to be effective in psoriasis. NPD-0614-13 and NPD-0614-24 did not alter per se the physiological functions of the different skin cell populations involved in the pathogenesis of inflammatory skin diseases. In human primary keratinocytes stimulated with tumor necrosis factor-α or lipopolysaccharide the compounds were able to counteract the altered proliferation and to dampen inflammatory signaling by reducing the activation of p38MAPK, c-Jun, NF-kBp65, and the release of cytokines. Furthermore, the molecules were tested for their beneficial effects in human epidermal and full-thickness reconstituted skin models of psoriasis. NPD-0614-13 and NPD-0614-24 recovered the psoriasis skin phenotype exerting pro-differentiating activity and reducing the expression of pro-inflammatory cytokines and antimicrobial peptides. These data provide a rationale for considering NPD-0614-13 and NPD-0614-24 in the management of psoriasis.


Asunto(s)
Antiinflamatorios/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Catecoles/farmacología , Diferenciación Celular , Inflamación/tratamiento farmacológico , Compuestos Organometálicos/farmacología , Psoriasis/tratamiento farmacológico , Receptores de Hidrocarburo de Aril/metabolismo , Piel/efectos de los fármacos , Humanos , Inflamación/metabolismo , Inflamación/patología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Ligandos , Psoriasis/metabolismo , Psoriasis/patología , Piel/metabolismo , Piel/patología
5.
Exp Dermatol ; 29(9): 833-839, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32779245

RESUMEN

Acne is the most common skin disease in adolescent Westernized populations. Several data support the involvement of the mammalian target of rapamycin complex 1 (mTORC1) signalling in the interplay between androgens, insulin, insulin-like growth factor (IGF1) and high-glycaemic index diet in acne. The peroxisome proliferator-activated receptor γ (PPARγ) is involved in both differentiation and anti-inflammatory response. Low differentiated sebocytes showed decreased expression of PPARγ and increased level of insulin and IGF-1 receptors, resulting in the production of acne-like sebum and inflammatory mediators. In this viewpoint, we discuss how in acne the dysregulation of proliferation and differentiation processes in sebocytes and keratinocytes may be associated with altered response to androgens and other hormones, such as insulin or IGF-1. Moreover, we propose PPARγ modulation as an innovative therapeutic approach to normalize sebocyte differentiation process, interfering with the different mechanisms involved in altered pilosebaceous unit.


Asunto(s)
Acné Vulgar/etiología , Diferenciación Celular , Hormonas/metabolismo , Acné Vulgar/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Queratinocitos/metabolismo , PPAR gamma/metabolismo
6.
Acta Derm Venereol ; 100(10): adv00157, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32449780

RESUMEN

Although recent therapeutic developments raise hope, melanoma remains a devastating disease with a need for new treatment targets. In other tumours prohormone convertases have been shown to be pro-tumourigenic as they are involved in processing preforms of matrix-metalloproteinases, growth factors and adhesion molecules. The aim of this study was to look for new treatment options for melanoma, by investigating the role of the prohormone convertase Paired basic Amino acid-Cleaving Enzyme 4 (PACE4/PCSK6) in melanoma cell lines and human melanoma tissue. PACE4-transfected A375 melanoma cells displayed significantly increased proliferation, MMP-2 production, gelatinase activity and migratory capacity in vitro compared with sham-transfected cells. In vivo, elevated PACE4 expression resulted in significantly increased tumour growth on immunodeficient mice. In the majority of 45 human primary melanomas and melanoma metastases ex vivo PACE4 immunoreactivity was detectable, while it was absent in in situ melanomas. These results indicate PACE4 as a regulator of melanoma cell aggressiveness.


Asunto(s)
Melanoma/enzimología , Proproteína Convertasas/metabolismo , Serina Endopeptidasas/metabolismo , Neoplasias Cutáneas/enzimología , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Ratones Pelados , Ratones SCID , Terapia Molecular Dirigida , Invasividad Neoplásica , Proproteína Convertasas/antagonistas & inhibidores , Proproteína Convertasas/genética , Serina Endopeptidasas/genética , Inhibidores de Serina Proteinasa/uso terapéutico , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Carga Tumoral
7.
Exp Dermatol ; 24(4): 245-51, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25644500

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that modulate the expression of multiple different genes involved in the regulation of lipid, glucose and amino acid metabolism. PPARs and cognate ligands also regulate important cellular functions, including cell proliferation and differentiation, as well as inflammatory responses. This includes a role in mediating skin and pilosebaceous unit homoeostasis: PPARs appear to be essential for maintaining skin barrier permeability, inhibit keratinocyte cell growth, promote keratinocyte terminal differentiation and regulate skin inflammation. They also may have protective effects on human hair follicle (HFs) epithelial stem cells, while defects in PPARγ-mediated signalling may promote the death of these stem cells and thus facilitate the development of cicatricial alopecia (lichen planopilaris). Overall, however, selected PPARγ modulators appear to act as hair growth inhibitors that reduce the proliferation and promote apoptosis of hair matrix keratinocytes. The fact that commonly prescribed PPARγ-modulatory drugs of the thiazolidine-2,4-dione class can exhibit a battery of adverse cutaneous effects underscores the importance of distinguishing beneficial from clinically undesired cutaneous activities of PPARγ ligands and to better understand on the molecular level how PPARγ-regulated cutaneous lipid metabolism and PPARγ-mediated signalling impact on human skin physiology and pathology. Surely, the therapeutic potential that endogenous and exogenous PPARγ modulators may possess in selected skin diseases, ranging from chronic inflammatory hyperproliferative dermatoses like psoriasis and atopic dermatitis, via scarring alopecia and acne can only be harnessed if the complexities of PPARγ signalling in human skin and its appendages are systematically dissected.


Asunto(s)
PPAR gamma/fisiología , Fenómenos Fisiológicos de la Piel , Animales , Cabello/fisiología , Enfermedades del Cabello/etiología , Enfermedades del Cabello/fisiopatología , Humanos , Mediadores de Inflamación/fisiología , Ligandos , PPAR gamma/agonistas , Transducción de Señal , Piel/efectos de los fármacos , Piel/patología , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/fisiología , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/fisiopatología , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/prevención & control , Tiazolidinedionas/farmacología
8.
Part Fibre Toxicol ; 11: 74, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25498254

RESUMEN

BACKGROUND: Diesel exhaust particles (DEP) are major constituents of ambient air pollution and their adverse health effect is an area of intensive investigations. With respect to the immune system, DEP have attracted significant research attention as a factor that could influence allergic diseases interfering with cytokine production and chemokine expression. With this exception, scant data are available on the impact of DEP on lymphocyte homeostasis. Here, the effects of nanoparticles from Euro 4 (E4) and Euro 5 (E5) light duty diesel engines on the phenotype and function of T lymphocytes from healthy donors were evaluated. METHODS: T lymphocytes were isolated from peripheral blood obtained from healthy volunteers and subsequently stimulated with different concentration (from 0.15 to 60 µg/ml) and at different time points (from 24 h to 9 days) of either E4 or E5 particles. Immunological parameters, including apoptosis, autophagy, proliferation levels, mitochondrial function, expression of activation markers and cytokine production were evaluated by cellular and molecular analyses. RESULTS: DEP exposure caused a pronounced autophagic-lysosomal blockade, thus interfering with a key mechanism involved in the maintaining of T cell homeostasis. Moreover, DEP decreased mitochondrial membrane potential but, unexpectedly, this effect did not result in changes of the apoptosis and/or necrosis levels, as well as of intracellular content of adenosine triphosphate (ATP). Finally, a down-regulation of the expression of the alpha chain of the interleukin (IL)-2 receptor (i.e., the CD25 molecule) as well as an abnormal Th1 cytokine expression profile (i.e., a decrease of IL-2 and interferon (IFN)-γ production) were observed after DEP exposure. No differences between the two compounds were detected in all studied parameters. CONCLUSIONS: Overall, our data identify functional and phenotypic T lymphocyte parameters as relevant targets for DEP cytotoxicity, whose impairment could be detrimental, at least in the long run, for human health, favouring the development or the progression of diseases such as autoimmunity and cancer.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Regulación hacia Abajo/efectos de los fármacos , Subunidad alfa del Receptor de Interleucina-2/antagonistas & inhibidores , Activación de Linfocitos/efectos de los fármacos , Hollín/toxicidad , Linfocitos T/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Adulto , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/metabolismo , Autofagia/efectos de los fármacos , Transporte Biológico , Biomarcadores/metabolismo , Células Cultivadas , Femenino , Humanos , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Cinética , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Persona de Mediana Edad , Tamaño de la Partícula , Hollín/química , Hollín/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/ultraestructura , Emisiones de Vehículos/análisis , Adulto Joven
9.
Biology (Basel) ; 13(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38392327

RESUMEN

Wound repair and skin regeneration is a very complex orchestrated process that is generally composed of four phases: hemostasis, inflammation, proliferation, and remodeling. Each phase involves the activation of different cells and the production of various cytokines, chemokines, and other inflammatory mediators affecting the immune response. The microbial skin composition plays an important role in wound healing. Indeed, skin commensals are essential in the maintenance of the epidermal barrier function, regulation of the host immune response, and protection from invading pathogenic microorganisms. Chronic wounds are common and are considered a major public health problem due to their difficult-to-treat features and their frequent association with challenging chronic infections. These infections can be very tough to manage due to the ability of some bacteria to produce multicellular structures encapsulated into a matrix called biofilms. The bacterial species contained in the biofilm are often different, as is their capability to influence the healing of chronic wounds. Biofilms are, in fact, often tolerant and resistant to antibiotics and antiseptics, leading to the failure of treatment. For these reasons, biofilms impede appropriate treatment and, consequently, prolong the wound healing period. Hence, there is an urgent necessity to deepen the knowledge of the pathophysiology of delayed wound healing and to develop more effective therapeutic approaches able to restore tissue damage. This work covers the wound-healing process and the pathogenesis of chronic wounds infected by biofilm-forming pathogens. An overview of the strategies to counteract biofilm formation or to destroy existing biofilms is also provided.

10.
Exp Dermatol ; 22(1): 41-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23278893

RESUMEN

Azelaic acid (AzA) has been used for the treatment for inflammatory skin diseases, such as acne and rosacea. Interestingly, an improvement in skin texture has been observed after long-time treatment with AzA. We previously unrevealed that anti-inflammatory activity of AzA involves a specific activation of PPARγ, a nuclear receptor that plays a relevant role in inflammation and even in ageing processes. As rosacea has been considered as a photo-aggravated disease, we investigated the ability of AzA to counteract stress-induced premature cell senescence (SIPS). We employed a SIPS model based on single exposure of human dermal fibroblasts (HDFs) to UVA and 8-methoxypsoralen (PUVA), previously reported to activate a senescence-like phenotype, including long-term growth arrest, flattened morphology and increased synthesis of matrix metalloproteinases (MMPs) and senescence-associated ß-galactosidase (SA-ß-gal). We found that PUVA-treated HDFs grown in the presence of AzA maintained their morphology and reduced MMP-1 release and SA-ß-galactosidase-positive cells. Moreover, AzA induced a reduction in ROS generation, an up-modulation of antioxidant enzymes and a decrease in cell membrane lipid damages in PUVA-treated HDFs. Further evidences of AzA anti-senescence effect were repression of p53 and p21, increase in type I pro-collagen and abrogation of the enhanced expression of growth factors, such as HGF and SCF. Interestingly, PUVA-SIPS showed a decreased activation of PPARγ and AzA counteracted this effect, suggesting that AzA effect involves PPARγ modulation. All together these data showed that AzA interferes with PUVA-induced senescence-like phenotype and its ability to activate PPAR-γ provides relevant insights into the anti-senescence mechanism.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Fármacos Dermatológicos/farmacología , Ácidos Dicarboxílicos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , PPAR gamma/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Senescencia Celular/efectos de la radiación , Colágeno Tipo I/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fibroblastos/citología , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Metaloproteinasa 1 de la Matriz/metabolismo , Metoxaleno/farmacología , Terapia PUVA , Fenotipo , Fosfolípidos/metabolismo , Fármacos Fotosensibilizantes/farmacología , Procolágeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Células Madre/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Rayos Ultravioleta , beta-Galactosidasa/metabolismo
11.
Cells ; 12(7)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048080

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) is the most common UV-induced keratinocyte-derived cancer, and its progression is characterized by the epithelial-mesenchymal transition (EMT) process. We previously demonstrated that PPARγ activation by 2,4,6-octatrienoic acid (Octa) prevents cutaneous UV damage. We investigated the possible role of the PPARγ activators Octa and the new compound (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic acid (A02) in targeting keratinocyte-derived skin cancer. Like Octa, A02 exerted a protective effect against UVB-induced oxidative stress and DNA damage in NHKs. In the squamous cell carcinoma A431 cells, A02 inhibited cell proliferation and increased differentiation markers' expression. Moreover, Octa and even more A02 counteracted the TGF-ß1-dependent increase in mesenchymal markers, intracellular ROS, the activation of EMT-related signal transduction pathways, and cells' migratory capacity. Both compounds, especially A02, counterbalanced the TGF-ß1-induced cell membrane lipid remodeling and the release of bioactive lipids involved in EMT. In vivo experiments on a murine model useful to study cell proliferation in adult animals showed the reduction of areas characterized by active cell proliferation in response to A02 topical treatment. In conclusion, targeting PPARγ may be useful for the prevention and treatment of keratinocyte-derived skin cancer.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Ratones , Animales , Carcinoma de Células Escamosas/patología , Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta1/farmacología , PPAR gamma/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Carcinogénesis
12.
J Immunol ; 185(3): 1903-11, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20610647

RESUMEN

Acne is the most common inflammatory skin disease in which IL-1 plays a central role. Although alpha-melanocyte-stimulating hormone has immunomodulatory effects, its usefulness as an anti-inflammatory agent in acne is hampered owing to its lipid- and pigment-inducing effects via activation of melanocortin receptors (MC-Rs). We used the immortalized human sebocyte line SZ95 as an in vitro model to investigate the anti-inflammatory potential of KdPT, a tripeptide derivative of the C-terminal end of alpha-melanocyte-stimulating hormone. KdPT potently suppressed IL-1beta-induced IL-6 and IL-8 expression. Mechanistically, KdPT decreased IL-1beta-mediated IkappaBalpha degradation, reduced nuclear accumulation of p65, and attenuated DNA binding of NF-kappaB. Moreover, KdPT reduced IL-1beta-mediated generation of intracellular reactive oxygen species, which contributed to IL-1beta-mediated cytokine induction. KdPT also reduced cell surface binding of fluorochrome-labeled IL-1beta in SZ95 sebocytes. Analysis of the crystal structure of the complex between IL-1beta/IL-1R type I (IL-1RI), followed by computer modeling of KdPT and subsequent modeling of the peptide receptor complex with the crystal structure of IL-1RI via manual docking, further predicted that the tripeptide, through several H-bonds and one hydrophobic bond, interacts with the IL-1RI. Importantly, KdPT did not bind to MC-1Rs, as demonstrated by blocking experiments with a peptide analog of Agouti signaling protein and by binding assays using MC-1R-expressing B16 melanoma cells. Accordingly, KdPT failed to induce melanogenesis. Our data demonstrate a promising anti-inflammatory potential of KdPT and point toward novel future directions in the treatment of acne-as well as of various other IL-1-mediated inflammatory diseases-with this small molecule.


Asunto(s)
Citocinas/antagonistas & inhibidores , Inmunosupresores/farmacología , Interleucina-1beta/antagonistas & inhibidores , Fragmentos de Péptidos/fisiología , Glándulas Sebáceas/citología , Glándulas Sebáceas/inmunología , Transducción de Señal/inmunología , alfa-MSH/fisiología , Animales , Línea Celular , Línea Celular Transformada , Citocinas/biosíntesis , Proteínas de Unión al ADN/fisiología , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/antagonistas & inhibidores , Proteínas I-kappa B/metabolismo , Interleucina-1beta/fisiología , Interleucina-6/antagonistas & inhibidores , Interleucina-8/antagonistas & inhibidores , Melanoma Experimental , Ratones , Inhibidor NF-kappaB alfa , Glándulas Sebáceas/metabolismo
13.
iScience ; 25(3): 103871, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35252805

RESUMEN

Melasma is a hyperpigmentary disorder with photoaging features, whose manifestations appear on specific face areas, rich in sebaceous glands (SGs). To explore the SGs possible contribution to the onset, the expression of pro-melanogenic and inflammatory factors from the SZ95 SG cell line exposed to single or repetitive ultraviolet (UVA) radiation was evaluated. UVA up-modulated the long-lasting production of α-MSH, EDN1, b-FGF, SCF, inflammatory cytokines and mediators. Irradiated SZ95 sebocyte conditioned media increased pigmentation in melanocytes and the expression of senescence markers, pro-inflammatory cytokines, and growth factors regulating melanogenesis in fibroblasts cultures. Cocultures experiments with skin explants confirmed the role of sebocytes on melanogenesis promotion. The analysis on sebum collected from melasma patients demonstrated that in vivo sebocytes from lesional areas express the UVA-activated pathways markers observed in vitro. Our results indicate sebocytes as one of the actors in melasma pathogenesis, inducing prolonged skin cell stimulation, contributing to localized dermal aging and hyperpigmentation.

14.
Microbiol Spectr ; 10(2): e0035122, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35416701

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has become the leading cause of skin and soft tissue infections (SSTIs). Biofilm production further complicates patient treatment, contributing to increased bacterial persistence and antibiotic tolerance. The study aimed to explore the efficacy of different antibiotics on biofilm-producing MRSA isolated from patients with SSTI. A total of 32 MRSA strains were collected from patients with SSTI. The MIC and minimal biofilm eradication concentration (MBEC) were measured in planktonic and biofilm growth. The study showed that dalbavancin, linezolid, and vancomycin all inhibited MRSA growth at their EUCAST susceptible breakpoint. Of the MRSA strains, 87.5% (n = 28) were strong biofilm producers (SBPs), while only 12.5% (n = 4) were weak biofilm producers (WBPs). The MBEC90 values for dalbavancin were significantly lower than those of linezolid and vancomycin in all tested strains. We also found that extracellular DNA (eDNA) contributes to the initial microbial attachment and biofilm formation. The amount of eDNA differed among MRSA strains and was significantly higher in those isolates with high dalbavancin and vancomycin tolerance. Exogenously added DNA increased the MBEC90 and protection of biofilm cells from dalbavancin activity. Of note, the relative abundance of eDNA was higher in MRSA biofilms exposed to MBEC90 dalbavancin than in untreated MRSA biofilms and those exposed to sub-MIC90. Overall, dalbavancin was the most active antibiotic against MRSA biofilms at concentrations achievable in the human serum. Moreover, the evidence of a drug-related increase of eDNA and its contribution to antimicrobial drug tolerance reveals novel potential targets for antibiofilm strategies against MRSA. IMPORTANCE Staphylococcus aureus is the most common cause of skin and soft tissue infections (SSTIs) worldwide. In addition, methicillin-resistant S. aureus (MRSA) is increasingly frequent in postoperative infections and responsible for a large number of hospital readmissions and deaths. Biofilm formation by S. aureus is a primary risk factor in SSTIs, due to a higher antibiotic tolerance. Our study showed that the biofilm-forming capacity varied among MRSA strains, although strong biofilm producers were significantly more abundant than weak biofilm producer strains. Notably, dalbavancin demonstrated a potent antibiofilm activity at concentrations achievable in human serum. Nevertheless, dalbavancin activity was affected by an increased concentration of extracellular DNA in the biofilm matrix. This study provides novel insight for designing more targeted therapeutic strategies against MRSA and to prevent or eradicate harmful biofilms.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones de los Tejidos Blandos , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , ADN , Humanos , Linezolid/farmacología , Linezolid/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Infecciones de los Tejidos Blandos/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Teicoplanina/análogos & derivados , Vancomicina/farmacología , Vancomicina/uso terapéutico
15.
Microbiol Spectr ; 9(1): e0055021, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34406812

RESUMEN

Bacterial bloodstream infection (BSI) represents a significant complication in hematologic patients. However, factors leading to BSI and progression to end-organ disease and death are understood only partially. The study analyzes host and microbial risk factors and assesses their impact on BSI development and mortality. A total of 96 patients with hematological malignancies and BSI were included in the study. Host-associated risk factors and all causes of mortality were analyzed by multivariable logistic regression at 30 days after BSI onset of the first neutropenic episode. The multidrug-resistant profile and biofilm production of bacterial isolates from primary BSI were included in the analysis. Median age was 60 years. The underlying diagnoses were acute leukemia (55%), lymphoma (31%), and myeloma (14%). A total of 96 bacterial isolates were isolated from BSIs. Escherichia coli was the most common isolate (29.2%). Multidrug-resistant bacteria caused 10.4% of bacteremia episodes. Weak biofilm producers (WBPs) were significantly (P < 0.0001) more abundant (72.2%) than strong biofilm producers (SBPs) (27.8%). Specifically, SBPs were 7.1% for E. coli, 93.7% for P. aeruginosa, 50% for K. pneumoniae, and 3.8% for coagulase-negative staphylococci. Mortality at day 30 was 8.3%, and all deaths were attributable to Gram-negative bacteria. About 22% of all BSIs were catheter-related BSIs (CRBSIs) and mostly caused by Gram-positive bacteria (79.0%). However, CRBSIs were not correlated with biofilm production levels (P = 0.75) and did not significantly impact the mortality rate (P = 0.62). Conversely, SBP bacteria were an independent risk factor (P = 0.018) for developing an end-organ disease. In addition, multivariate analysis indicated that SBPs (P = 0.013) and multidrug-resistant bacteria (P = 0.006) were independent risk factors associated with 30-day mortality. SBP and multidrug-resistant (MDR) bacteria caused a limited fraction of BSI in these patients. However, when present, SBPs raise the risk of end-organ disease and, together with an MDR phenotype, can independently and significantly concur at increasing the risk of death. IMPORTANCE Bacterial bloodstream infection (BSI) is a significant complication in hematologic patients and is associated with high mortality rates. Despite improvements in BSI management, factors leading to sepsis are understood only partially. This study analyzes the contribution of bacterial biofilm on BSI development and mortality in patients with hematological malignancies (HMs). In this work, weak biofilm producers (WBPs) were significantly more abundant than strong biofilm producers (SBPs). However, when present, SBP bacteria raised the risk of end-organ disease in HM patients developing a BSI. Besides, SBPs, together with a multidrug-resistant (MDR) phenotype, independently and significantly concur at increasing the risk of death in HM patients. The characterization of microbial biofilms may provide key information for the diagnosis and therapeutic management of BSI and may help develop novel strategies to either eradicate or control harmful microbial biofilms.


Asunto(s)
Bacteriemia/microbiología , Bacteriemia/mortalidad , Sistema Cardiovascular/microbiología , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Neoplasias Hematológicas/complicaciones , Adulto , Anciano , Bacteriemia/etiología , Femenino , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/genética , Bacterias Grampositivas/fisiología , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
17.
Exp Dermatol ; 19(9): 813-20, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20545756

RESUMEN

Azelaic acid (AzA), a nine-carbon dicarboxylic acid, is an agent for the topical treatment of acne. It has also been shown to be effective in rosacea; however, the mechanism of action has not been clarified. Because inflammation is a common feature of both conditions, we investigated the effects of azelaic acid on the inflammatory response of normal human keratinocytes to ultraviolet B light, which is a photosensitizer agent in rosacea. AzA, at 20 mM, a concentration achievable following topical application of a 15% gel, suppresses ultraviolet B light-induced interleukins-1beta, -6 and tumor necrosis factor-alpha mRNA expression and protein secretion. Mechanistically, azelaic acid significantly reduced the ultraviolet B light-induced nuclear translocation of nuclear factor kB p65 subunit and the phosphorylation of the p38 mitogen and stress-activated protein kinase. Moreover, as peroxisome proliferators-activated receptor gamma, (PPARgamma) which has a crucial role in the control of inflammation, is activated by fatty acids and products of lipid peroxidation, we further investigated the effect of azelaic acid on the expression of this nuclear receptor. AzA induced peroxisome proliferators-activated receptor-gamma mRNA and its transcriptional activity. The PPARgamma antagonist GW9662 abrogated the inhibitory effects of AzA on the UVB-induced pro-inflammatory cytokines release and on the cell proliferation. Our study provides new insights into the molecular mechanisms of the activity of azelaic acid and lands additional evidences for its therapeutic effects on inflammatory skin diseases, such as rosacea.


Asunto(s)
Acné Vulgar/tratamiento farmacológico , Fármacos Dermatológicos/farmacología , Ácidos Dicarboxílicos/farmacología , Queratinocitos/efectos de los fármacos , FN-kappa B/metabolismo , Células Cultivadas , Citocinas/metabolismo , Fármacos Dermatológicos/uso terapéutico , Ácidos Dicarboxílicos/uso terapéutico , Evaluación Preclínica de Medicamentos , Genes Reporteros , Humanos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , PPAR gamma/agonistas , PPAR gamma/genética , PPAR gamma/metabolismo , Fosforilación/efectos de los fármacos , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rosácea/tratamiento farmacológico , Transcripción Genética/efectos de los fármacos , Rayos Ultravioleta , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Exp Dermatol ; 18(3): 222-31, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18803658

RESUMEN

Carotenoids are used for systemic photoprotection in humans. Regarding mechanisms underlying photoprotective effects of carotenoids, here we compared the modulation of UVA-related injury by carotenoids. Human dermal fibroblasts (HDF) were exposed to moderate doses of UVA, which stimulated apoptosis, increased levels of reactive oxygen species and thiobarbituric acid reactive substances, decreased antioxidant enzymes activities, promoted membrane perturbation, and induced the expression of heme oxygenase-1 (HO-1). The carotenoids astaxanthin (AX), canthaxanthin (CX) and beta-carotene (betaC) were delivered to HDF 24 h before exposure to UVA. Astaxanthin exhibited a pronounced photoprotective effect and counteracted all of the above-mentioned UVA-induced alterations to a significant extent. beta-Carotene only partially prevented the UVA-induced decline of catalase and superoxide dismutase activities, but it increased membrane damage and stimulated HO-1 expression. Moreover, betaC dose-dependently induced caspase-3 activity following UVA exposure. In contrast, CX had no effect on oxidative damage, except for HO-1 expression, which was augmented. Uptake of AX by fibroblasts was higher than that of the other two carotenoids. The photostability of the three compounds in fibroblasts was AX > CX >> betaC. The data indicate that the oxo-carotenoid AX has a superior preventive effect towards photo-oxidative changes in cell culture.


Asunto(s)
Cantaxantina/farmacología , Catalasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Superóxido Dismutasa/metabolismo , Rayos Ultravioleta/efectos adversos , beta Caroteno/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Caspasa 3/metabolismo , Células Cultivadas , Dermis/efectos de los fármacos , Dermis/metabolismo , Dermis/efectos de la radiación , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Hemo-Oxigenasa 1/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Xantófilas/farmacología
19.
Exp Dermatol ; 17(2): 115-24, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18047584

RESUMEN

Aberrant gap junctional intercellular communication (GJIC) has been implicated in tumor development and progression. UltravioletA (UVA)-induced oxidative stress has been associated with skin carcinogenesis. We report a potential link between GJIC and the cellular stress response induced by UVA in normal human keratinocytes (NHK). In this study, UVA irradiation (10 J/cm(2)) compromised GJIC integrity in absence of cytotoxic effects as demonstrated by the absence of cell death and by the reversibility of GJIC down-regulation. Inhibition of communication by UVA was associated with hyperphosphorylation and decreased expression of connexin43 (Cx43), the most abundant gap junction protein expressed by keratinocytes. Cx43 hyperphosphorylation induced by UVA is, at least in part, mediated through mitogen-activated protein kinase (MAPK) activation as Ser279 and Ser282 sites, two downstream direct targets of p38 MAPK were found to be phosphorylated after UVA treatment. However, inhibition of p38 MAPK activity did not significantly protect from cell-cell communication inhibition because of a strong cellular cytotoxicity observed with SB202190 and SB203580, two selective inhibitors of p38 MAPK, in combination with UVA that compromises the outcome of dye transfer assay. By contrast, in Hacat cell line, inhibition of p38 activity reduced both phosphorylation and degradation of Cx43, demonstrating that these events are correlated.


Asunto(s)
Comunicación Celular/efectos de la radiación , Uniones Comunicantes/efectos de la radiación , Queratinocitos/metabolismo , Rayos Ultravioleta , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Comunicación Celular/fisiología , Membrana Celular/efectos de la radiación , Células Cultivadas , Conexina 43/genética , Conexina 43/metabolismo , Regulación hacia Abajo/efectos de la radiación , Uniones Comunicantes/fisiología , Humanos , Queratinocitos/efectos de la radiación , Fosforilación/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de la radiación , Proteínas Quinasas p38 Activadas por Mitógenos/genética
20.
Free Radic Biol Med ; 115: 266-277, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29229551

RESUMEN

Pleural mesothelioma is a deadly form of cancer. The prognosis is extremely poor due to the limited treatment modalities. Uptake of asbestos fibres, the leading cause of mesothelioma, lead to the accumulation of reactive-oxygen-species (ROS). Interestingly, increasing ROS production by using ROS-generating drugs may offer a strategy to selectively trigger cell death. Exemestane, an aromatase inhibitor, has previously shown anti-tumor properties in mesothelioma preclinical models suggesting a role of G protein-coupled receptor 30 (GPR30) in the drug response. As exemestane, in addition to blocking estrogen biosynthesis, generates ROS that are able to arrest the growth of breast cancer, we explored the role of ROS, antioxidant defense system, and ROS-induced signalling pathways in mesothelioma cells during exemestane response. Here we report that exemestane treatment reduced cell proliferation with an increase in ROS production and reduction of cyclic adenosine monophosphate (cAMP) levels in MSTO-H211, Ist-Mes1, Ist-Mes2 and MPP89 exemestane-sensitive mesothelioma cell lines, but not in NCI-H2452 exemestane-insensitive mesothelioma cells. Exemestane induced a significant antioxidant response in NCI-H2452 cells, as highlighted by an increase in γ-glutamylcysteine levels, catalase (Cat), superoxide-dismutase and (SOD) and glutathione-peroxidase (GSH-Px) activity and nuclear factor E2-related factor 2 (Nrf2) activation, responsible for drug insensitivity. Conversely, exemestane elevated ROS levels along with increased ERK phosphorylation and a reduction of p-STA3 in exemestane-sensitive mesothelioma cells. ROS generation was the crucial event of exemestane action because ROS inhibitor N-acetyl-L-cysteine (NAC) abrogated p-ERK and p-STAT3 modulation and cellular death. Exemestane also modulates ERK and STAT3 signalling via GPR30. Results indicate an essential role of ROS in the antiproliferative action of exemestane in mesothelioma cells. It is likely that the additional oxidative insults induced by exemestane results in the lethal effects of mesothelioma cells by increasing ROS production. As such, manipulating ROS levels with exemestane seems to be a feasible strategy to selectively kill mesothelioma cells with less toxicity to normal cells by regulating ERK and STAT3 activity.


Asunto(s)
Androstadienos/farmacología , Antineoplásicos/farmacología , Inhibidores de la Aromatasa/farmacología , Mesotelioma/tratamiento farmacológico , Neoplasias Pleurales/tratamiento farmacológico , Acetilcisteína/farmacología , Amianto/efectos adversos , Muerte Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA