RESUMEN
Cytokines are important immune modulators, and pivotal biomarkers for the diagnostic of various diseases. In standard analytical procedure, each protein is detected individually, using for instance gold standard ELISA protocols or nucleic acid amplification-based immunoassays. In recent years, DNA nanotechnology has been employed for creating sophisticated biomolecular systems that perform neuromorphic computing on molecular inputs, opening the door to concentration pattern recognition for biomedical applications. This work introduces immuno-PUMA (i-PUMA), an isothermal amplification-based immunoassay for ultrasensitive protein detection. The assay couples the convenience of supported format of an ELISA protocol with the computing capabilities of a DNA/enzyme circuit. We demonstrate a limit of detection of 2.1 fM, 8.7 fM and 450 aM for IL12, IL4 and IFNγ cytokines, respectively, outperforming the traditional ELISA format. i-PUMA's versatility extends to molecular computation, allowing the creation of 2-input perceptron-like classifiers for IL12 and IL4, with tunable weight sign and amplitude. Overall, i-PUMA represents a sensitive, low-cost, and versatile immunoassay with potential applications in multimarker-based sample classification, complementing existing molecular profiling techniques.
Asunto(s)
ADN , Límite de Detección , Humanos , Inmunoensayo/métodos , ADN/química , ADN/genética , Interleucina-12/inmunología , Interleucina-12/análisis , Interleucina-4/análisis , Interferón gamma/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Técnicas de Amplificación de Ácido Nucleico/métodosRESUMEN
One of the serious challenges facing modern point-of-care (PoC) molecular diagnostic platforms relate to reliable detection of low concentration biomarkers such as nucleic acids or proteins in biological samples. Non-specific analyte-receptor interactions due to competitive binding in the presence of abundant molecules, inefficient mass transport and very low number of analyte molecules in sample volume, in general pose critical hurdles for successful implementation of such PoC platforms for clinical use. Focusing on these specific challenges, this work reports a unique PoC biosensor that combines the advantages of nanoscale biologically-sensitive field-effect transistor arrays (BioFET-arrays) realized in a wafer-scale top-down nanofabrication as high sensitivity electrical transducers with that of sophisticated molecular programs (MPs) customized for selective recognition of analyte miRNAs and amplification resulting in an overall augmentation of signal transduction strategy. The MPs realize a programmable universal molecular amplifier (PUMA) in fluidic matrix on chip and provide a biomarker-triggered exponential release of small nucleic acid sequences easily detected by receptor-modified BioFETs. A common miRNA biomarker LET7a was selected for successful demonstration of this novel biosensor, achieving limit of detection (LoD) down to 10 fM and wide dynamic ranges (10 pM-10 nM) in complex physiological solutions. As the determination of biomarker concentration is implemented by following the electrical signal related to analyte-triggered PUMA in time-domain instead of measuring the threshold shifts of BioFETs, and circumvents direct hybridization of biomarkers at transducer surface, this new strategy also allows for multiple usage (>3 times) of the biosensor platform suggesting exceptional cost-effectiveness for practical use.
Asunto(s)
Técnicas Biosensibles , Diseño de Equipo , Límite de Detección , MicroARNs , Técnicas Biosensibles/instrumentación , MicroARNs/análisis , Humanos , Biomarcadores , Transistores Electrónicos , Sistemas de Atención de Punto , Dispositivos Laboratorio en un ChipRESUMEN
To achieve malaria eradication, new preventative agents that act differently to front-line treatment drugs are needed. To identify potential chemoprevention starting points we screened a sub-set of the CSIRO Australia Compound Collection for compounds with slow-action in vitro activity against Plasmodium falciparum. This work identified N,N-dialkyl-5-alkylsulfonyl-1,3,4-oxadiazol-2-amines as a new antiplasmodial chemotype (e.g., 1 96 h IC50 550 nM; 3 96 h IC50 160 nM) with a different action to delayed-death slow-action drugs. A series of analogues were synthesized from thiotetrazoles and carbomoyl derivatives using Huisgen 1,3,4-oxadiazole synthesis followed by oxidation of the resultant thioethers to target sulfones. Structure activity relationship analysis of analogues identified compounds with potent and selective in vitro activity against drug-sensitive and multi-drug resistant Plasmodium parasites (e.g., 31 and 32 96 h IC50 <40 nM; SI > 2500). Subsequent studies in mice with compound 1, which had the best microsomal stability of the compounds assessed (T1/2 >255 min), demonstrated rapid clearance and poor oral in vivo efficacy in a P. berghei murine malaria model. These data indicate that while N,N-dialkyl-5-alkylsulfonyl-1,3,4-oxadiazol-2-amines are a novel class of slow-acting antiplasmodial agents, the further development of this chemotype for malaria chemoprophylaxis will require pharmacokinetic profile improvements.