Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Circulation ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39355927

RESUMEN

BACKGROUND: The heart expresses 2 main subtypes of cAMP-dependent protein kinase (PKA; type I and II) that differ in their regulatory subunits, RIα and RIIα. Embryonic lethality of RIα knockout mice limits the current understanding of type I PKA function in the myocardium. The objective of this study was to test the role of RIα in adult heart contractility and pathological remodeling. METHODS: We measured PKA subunit expression in human heart and developed a conditional mouse model with cardiomyocyte-specific knockout of RIα (RIα-icKO). Myocardial structure and function were evaluated by echocardiography, histology, and ECG and in Langendorff-perfused hearts. PKA activity and cAMP levels were determined by immunoassay, and phosphorylation of PKA targets was assessed by Western blot. L-type Ca2+ current (ICa,L), sarcomere shortening, Ca2+ transients, Ca2+ sparks and waves, and subcellular cAMP were recorded in isolated ventricular myocytes (VMs). RESULTS: RIα protein was decreased by 50% in failing human heart with ischemic cardiomyopathy and by 75% in the ventricles and in VMs from RIα-icKO mice but not in atria or sinoatrial node. Basal PKA activity was increased ≈3-fold in RIα-icKO VMs. In young RIα-icKO mice, left ventricular ejection fraction was increased and the negative inotropic effect of propranolol was prevented, whereas heart rate and the negative chronotropic effect of propranolol were not modified. Phosphorylation of phospholamban, ryanodine receptor, troponin I, and cardiac myosin-binding protein C at PKA sites was increased in propranolol-treated RIα-icKO mice. Hearts from RIα-icKO mice were hypercontractile, associated with increased ICa,L, and [Ca2+]i transients and sarcomere shortening in VMs. These effects were suppressed by the PKA inhibitor, H89. Global cAMP content was decreased in RIα-icKO hearts, whereas local cAMP at the phospholamban/sarcoplasmic reticulum Ca2+ ATPase complex was unchanged in RIα-icKO VMs. RIα-icKO VMs had an increased frequency of Ca2+ sparks and proarrhythmic Ca2+ waves, and RIα-icKO mice had an increased susceptibility to ventricular tachycardia. On aging, RIα-icKO mice showed progressive contractile dysfunction, cardiac hypertrophy, and fibrosis, culminating in congestive heart failure with reduced ejection fraction that caused 50% mortality at 1 year. CONCLUSIONS: These results identify RIα as a key negative regulator of cardiac contractile function, arrhythmia, and pathological remodeling.

3.
Circulation ; 142(2): 161-174, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32264695

RESUMEN

BACKGROUND: The cyclic AMP (adenosine monophosphate; cAMP)-hydrolyzing protein PDE4B (phosphodiesterase 4B) is a key negative regulator of cardiac ß-adrenergic receptor stimulation. PDE4B deficiency leads to abnormal Ca2+ handling and PDE4B is decreased in pressure overload hypertrophy, suggesting that increasing PDE4B in the heart is beneficial in heart failure. METHODS: We measured PDE4B expression in human cardiac tissues and developed 2 transgenic mouse lines with cardiomyocyte-specific overexpression of PDE4B and an adeno-associated virus serotype 9 encoding PDE4B. Myocardial structure and function were evaluated by echocardiography, ECG, and in Langendorff-perfused hearts. Also, cAMP and PKA (cAMP dependent protein kinase) activity were monitored by Förster resonance energy transfer, L-type Ca2+ current by whole-cell patch-clamp, and cardiomyocyte shortening and Ca2+ transients with an Ionoptix system. Heart failure was induced by 2 weeks infusion of isoproterenol or transverse aortic constriction. Cardiac remodeling was evaluated by serial echocardiography, morphometric analysis, and histology. RESULTS: PDE4B protein was decreased in human failing hearts. The first PDE4B-transgenic mouse line (TG15) had a ≈15-fold increase in cardiac cAMP-PDE activity and a ≈30% decrease in cAMP content and fractional shortening associated with a mild cardiac hypertrophy that resorbed with age. Basal ex vivo myocardial function was unchanged, but ß-adrenergic receptor stimulation of cardiac inotropy, cAMP, PKA, L-type Ca2+ current, Ca2+ transients, and cell contraction were blunted. Endurance capacity and life expectancy were normal. Moreover, these mice were protected from systolic dysfunction, hypertrophy, lung congestion, and fibrosis induced by chronic isoproterenol treatment. In the second PDE4B-transgenic mouse line (TG50), markedly higher PDE4B overexpression, resulting in a ≈50-fold increase in cardiac cAMP-PDE activity caused a ≈50% decrease in fractional shortening, hypertrophy, dilatation, and premature death. In contrast, mice injected with adeno-associated virus serotype 9 encoding PDE4B (1012 viral particles/mouse) had a ≈50% increase in cardiac cAMP-PDE activity, which did not modify basal cardiac function but efficiently prevented systolic dysfunction, apoptosis, and fibrosis, while attenuating hypertrophy induced by chronic isoproterenol infusion. Similarly, adeno-associated virus serotype 9 encoding PDE4B slowed contractile deterioration, attenuated hypertrophy and lung congestion, and prevented apoptosis and fibrotic remodeling in transverse aortic constriction. CONCLUSIONS: Our results indicate that a moderate increase in PDE4B is cardioprotective and suggest that cardiac gene therapy with PDE4B might constitute a new promising approach to treat heart failure.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Expresión Génica , Insuficiencia Cardíaca/etiología , Miocardio/metabolismo , Remodelación Ventricular/genética , Agonistas Adrenérgicos beta/farmacología , Animales , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Terapia Genética , Vectores Genéticos/genética , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Pruebas de Función Cardíaca , Humanos , Isoproterenol/farmacología , Ratones , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fenotipo , Receptores Adrenérgicos beta/metabolismo , Transducción Genética , Remodelación Ventricular/efectos de los fármacos
4.
Circulation ; 141(3): 199-216, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31906693

RESUMEN

BACKGROUND: Orai1 is a critical ion channel subunit, best recognized as a mediator of store-operated Ca2+ entry (SOCE) in nonexcitable cells. SOCE has recently emerged as a key contributor of cardiac hypertrophy and heart failure but the relevance of Orai1 is still unclear. METHODS: To test the role of these Orai1 channels in the cardiac pathophysiology, a transgenic mouse was generated with cardiomyocyte-specific expression of an ion pore-disruptive Orai1R91W mutant (C-dnO1). Synthetic chemistry and channel screening strategies were used to develop 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline (hereafter referred to as JPIII), a small-molecule Orai1 channel inhibitor suitable for in vivo delivery. RESULTS: Adult mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and reduced ventricular function associated with increased Orai1 expression and Orai1-dependent SOCE (assessed by Mn2+ influx). C-dnO1 mice displayed normal cardiac electromechanical function and cellular excitation-contraction coupling despite reduced Orai1-dependent SOCE. Five weeks after TAC, C-dnO1 mice were protected from systolic dysfunction (assessed by preserved left ventricular fractional shortening and ejection fraction) even if increased cardiac mass and prohypertrophic markers induction were observed. This is correlated with a protection from TAC-induced cellular Ca2+ signaling alterations (increased SOCE, decreased [Ca2+]i transients amplitude and decay rate, lower SR Ca2+ load and depressed cellular contractility) and SERCA2a downregulation in ventricular cardiomyocytes from C-dnO1 mice, associated with blunted Pyk2 signaling. There was also less fibrosis in heart sections from C-dnO1 mice after TAC. Moreover, 3 weeks treatment with JPIII following 5 weeks of TAC confirmed the translational relevance of an Orai1 inhibition strategy during hypertrophic insult. CONCLUSIONS: The findings suggest a key role of cardiac Orai1 channels and the potential for Orai1 channel inhibitors as inotropic therapies for maintaining contractility reserve after hypertrophic stress.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Proteína ORAI1/antagonistas & inhibidores , Proteína ORAI1/metabolismo , Función Ventricular Izquierda , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Quinasa 2 de Adhesión Focal/genética , Quinasa 2 de Adhesión Focal/metabolismo , Ratones , Ratones Transgénicos , Miocitos Cardíacos/patología , Proteína ORAI1/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
5.
J Mol Cell Cardiol ; 126: 129-139, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30500377

RESUMEN

Cardiac failure is a common complication in cancer survivors treated with anthracyclines. Here we followed up cardiac function and excitation-contraction (EC) coupling in an in vivo doxorubicin (Dox) treated mice model (iv, total dose of 10 mg/Kg divided once every three days). Cardiac function was evaluated by echocardiography at 2, 6 and 15 weeks after the last injection. While normal at 2 and 6 weeks, ejection fraction was significantly reduced at 15 weeks. In order to evaluate the underlying mechanisms, we measured [Ca2+]i transients by confocal microscopy and action potentials (AP) by patch-clamp technique in cardiomyocytes isolated at these times. Three phases were observed: 1/depression and slowing of the [Ca2+]i transients at 2 weeks after treatment, with occurrence of proarrhythmogenic Ca2+ waves, 2/compensatory state at 6 weeks, and 3/depression on [Ca2+]i transients and cell contraction at 15 weeks, concomitant with in-vivo defects. These [Ca2+]i transient alterations were observed without cellular hypertrophy or AP prolongation and mirrored the sarcoplasmic reticulum (SR) Ca2+ load variations. At the molecular level, this was associated with a decrease in the sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) expression and enhanced RyR2 phosphorylation at the protein kinase A (PKA, pS2808) site (2 and 15 weeks). RyR2 phosphorylation at the Ca2+/calmodulin dependent protein kinase II (CaMKII, pS2814) site was enhanced only at 2 weeks, coinciding with the higher incidence of proarrhythmogenic Ca2+ waves. Our study highlighted, for the first time, the progression of Dox treatment-induced alterations in Ca2+ handling and identified key components of the underlying Dox cardiotoxicity. These findings should be helpful to understand the early-, intermediate-, and late- cardiotoxicity already recorded in clinic in order to prevent or treat at the subclinical level.


Asunto(s)
Cardiotoxicidad/fisiopatología , Doxorrubicina/efectos adversos , Acoplamiento Excitación-Contracción , Potenciales de Acción , Animales , Calcio/metabolismo , Señalización del Calcio , Pruebas de Función Cardíaca , Masculino , Ratones Endogámicos C57BL , Retículo Sarcoplasmático/metabolismo , Factores de Tiempo
6.
J Mol Cell Cardiol ; 102: 34-44, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27876471

RESUMEN

PGC-1α, a key regulator of energy metabolism, seems to be a relevant therapeutic target to rectify the energy deficit observed in heart failure (HF). Since our previous work has shown positive effects of cobalamin (Cb) on PGC-1α cascade, we investigate the protective role of Cb in pressure overload-induced myocardial dysfunction. Mice were fed with normal diet (ND) or with Cb and folate supplemented diet (SD) 3weeks before and 4weeks after transverse aortic constriction (TAC). At the end, left ventricle hypertrophy and drop of ejection fraction were significantly lower in SD mice than in ND mice. Alterations in mitochondrial oxidative capacity, fatty acid oxidation and mitochondrial biogenesis transcription cascade were markedly improved by SD. In SD-TAC mice, lower expression level of the acetyltransferase GCN5 and upregulation of the methyltransferase PRMT1 were associated with a lower protein acetylation and a higher protein methylation levels. This was accompanied by a sustained expression of genes involved in mitochondrial biogenesis transcription cascade (Tfam, Nrf2, Cox1 and Cox4) after TAC in SD mice, suggesting a preserved activation of PGC-1α; this could be at least partly due to corrected acetylation/methylation status of this co-activator. The beneficial effect of the treatment would not be due to an effect of Cb and folate on oxidative stress or on homocysteinemia, which were unchanged by SD. These results showed that Cb and folate could protect the failing heart by preserving energy status through maintenance of mitochondrial biogenesis. It reinforces the concept of a metabolic therapy of HF.


Asunto(s)
Ácido Fólico/farmacología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Contracción Miocárdica/efectos de los fármacos , Vitamina B 12/farmacología , Animales , Biomarcadores , Células Cultivadas , Suplementos Dietéticos , Modelos Animales de Enfermedad , Metabolismo Energético , Insuficiencia Cardíaca/patología , Hiperhomocisteinemia/metabolismo , Ratones , Modelos Biológicos , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Estrés Oxidativo
7.
J Physiol ; 595(13): 4227-4243, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28374413

RESUMEN

KEY POINTS: Leptin, is a 16 kDa pleiotropic peptide not only primarily secreted by adipocytes, but also produced by other tissues, including the heart. Controversy exists regarding the adverse and beneficial effects of leptin on the heart We analysed the effect of a non-hypertensive dose of leptin on cardiac function, [Ca2+ ]i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction. We find that leptin activates mechanisms that contribute to cardiac dysfunction under physiological conditions. However, after the establishment of pressure overload, an increase in leptin levels has protective cardiac effects with respect to rescuing the cellular heart failure phenotype. These beneficial effects of leptin involve restoration of action potential duration via normalization of transient outward potassium current and sarcoplasmic reticulum Ca2+ content via rescue of control sarcoplasmic/endoplasmic reticulum Ca2+ ATPase levels and ryanodine receptor function modulation, leading to normalization of Ca2+ handling parameters. ABSTRACT: Leptin, is a 16 kDa pleiotropic peptide not only primary secreted by adipocytes, but also produced by other tissues, including the heart. Evidence indicates that leptin may have either adverse or beneficial effects on the heart. To obtain further insights, in the present study, we analysed the effect of leptin treatment on cardiac function, [Ca2+ ]i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction (TAC). Three weeks after surgery, animals received either leptin (0.36 mg kg-1  day-1 ) or vehicle via osmotic minipumps for 3 weeks. Echocardiographic measurements showed that, although leptin treatment was deleterious on cardiac function in sham, leptin had a cardioprotective effect following TAC. [Ca2+ ]i transient in cardiomyocytes followed similar pattern. Patch clamp experiments showed prolongation of action potential duration (APD) in TAC and leptin-treated sham animals, whereas, following TAC, leptin reduced the APD towards control values. APD variations were associated with decreased transient outward potassium current and Kv4.2 and KChIP2 protein expression. TAC myocytes showed a higher incidence of triggered activities and spontaneous Ca2+ waves. These proarrhythmic manifestations, related to Ca2+ /calmodulin-dependent protein kinase II and ryanodine receptor phosphorylation, were reduced by leptin. The results of the present study demonstrate that, although leptin treatment was deleterious on cardiac function in control animals, leptin had a cardioprotective effect following TAC, normalizing cardiac function and reducing arrhythmogeneity at the cellular level.


Asunto(s)
Estenosis de la Válvula Aórtica/tratamiento farmacológico , Cardiotónicos/farmacología , Leptina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Potenciales de Acción , Animales , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiotónicos/uso terapéutico , Células Cultivadas , Proteínas de Interacción con los Canales Kv/genética , Proteínas de Interacción con los Canales Kv/metabolismo , Leptina/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo
8.
IEEE Trans Med Imaging ; 43(9): 3279-3291, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38640053

RESUMEN

3D Imaging of the human heart at high frame rate is of major interest for various clinical applications. Electronic complexity and cost has prevented the dissemination of 3D ultrafast imaging into the clinic. Row column addressed (RCA) transducers provide volumetric imaging at ultrafast frame rate by using a low electronic channel count, but current models are ill-suited for transthoracic cardiac imaging due to field-of-view limitations. In this study, we proposed a mechanically curved RCA with an aperture adapted for transthoracic cardiac imaging ( 24×16 mm2). The RCA has a toroidal curved surface of 96 elements along columns (curvature radius rC = 4.47 cm) and 64 elements along rows (curvature radius rR = 3 cm). We implemented delay and sum beamforming with an analytical calculation of the propagation of a toroidal wave which was validated using simulations (Field II). The imaging performance was evaluated on a calibrated phantom. Experimental 3D imaging was achieved up to 12 cm deep with a total angular aperture of 30° for both lateral dimensions. The Contrast-to-Noise ratio increased by 12 dB from 2 to 128 virtual sources. Then, 3D Ultrasound Localization Microscopy (ULM) was characterized in a sub-wavelength tube diameter. Finally, 3D ULM was demonstrated on a perfused ex-vivo swine heart to image the coronary microcirculation.


Asunto(s)
Corazón , Imagenología Tridimensional , Fantasmas de Imagen , Transductores , Animales , Porcinos , Imagenología Tridimensional/métodos , Corazón/diagnóstico por imagen , Diseño de Equipo , Humanos , Ecocardiografía Tridimensional/métodos
9.
PLoS One ; 18(9): e0292015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37733758

RESUMEN

The beta-adrenergic system is a potent stimulus for enhancing cardiac output that may become deleterious when energy metabolism is compromised as in heart failure. We thus examined whether the AMP-activated protein kinase (AMPK) that is activated in response to energy depletion may control the beta-adrenergic pathway. We studied the cardiac response to beta-adrenergic stimulation of AMPKα2-/- mice or to pharmacological AMPK activation on contractile function, calcium current, cAMP content and expression of adenylyl cyclase 5 (AC5), a rate limiting step of the beta-adrenergic pathway. In AMPKα2-/- mice the expression of AC5 (+50%), the dose response curve of left ventricular developed pressure to isoprenaline (p<0.001) or the response to forskolin, an activator of AC (+25%), were significantly increased compared to WT heart. Similarly, the response of L-type calcium current to 3-isobutyl-l-methylxanthine (IBMX), a phosphodiesterase inhibitor was significantly higher in KO (+98%, p<0.01) than WT (+57%) isolated cardiomyocytes. Conversely, pharmacological activation of AMPK by 5-aminoimidazole-4-carboxamide riboside (AICAR) induced a 45% decrease in AC5 expression (p<0.001) and a 40% decrease of cAMP content (P<0.001) as measured by fluorescence resonance energy transfer (FRET) compared to unstimulated rat cardiomyocytes. Finally, in experimental pressure overload-induced cardiac dysfunction, AMPK activation was associated with a decreased expression of AC5 that was blunted in AMPKα2-/- mice. The results show that AMPK activation down-regulates AC5 expression and blunts the beta-adrenergic cascade. This crosstalk between AMPK and beta-adrenergic pathways may participate in a compensatory energy sparing mechanism in dysfunctional myocardium.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Insuficiencia Cardíaca , Ratones , Ratas , Animales , Calcio , Miocitos Cardíacos , Adrenérgicos , Calcio de la Dieta
10.
EBioMedicine ; 94: 104727, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37487415

RESUMEN

BACKGROUND: Coronary microvascular obstruction also known as no-reflow phenomenon is a major issue during myocardial infarction that bears important prognostic implications. Alterations of the microvascular network remains however challenging to assess as there is no imaging modality in the clinics that can image directly the coronary microvascular vessels. Ultrasound Localization Microscopy (ULM) imaging was recently introduced to map microvascular flows at high spatial resolution (∼10 µm). In this study, we developed an approach to image alterations of the microvascular coronary flow in ex vivo perfused swine hearts. METHODS: A porcine model of myocardial ischemia-reperfusion was used to obtain microvascular coronary alterations and no-reflow. Four female hearts with myocardial infarction in addition to 6 controls were explanted and placed immediately in a dedicated preservation and perfusion box manufactured for ultrasound imaging. Microbubbles (MB) were injected into the vasculature to perform Ultrasound Localization Microscopy (ULM) imaging and a linear ultrasound probe mounted on a motorized device was used to scan the heart on multiple slices. The coronary microvascular anatomy and flow velocity was reconstructed using dedicated ULM algorithms and analyzed quantitatively. FINDINGS: We were able to image the coronary microcirculation of ex vivo swine hearts at a resolution of tens of microns and measure flow velocities ranging from 10 mm/s in arterioles up to more than 200 mm/s in epicardial arteries. Under different aortic perfusion pressures, we measured in large arteries of a subset of control hearts an increase of flow velocity from 31 ± 11 mm/s at 87 mmHg to 47 ± 17 mm/s at 132 mmHg (N = 3 hearts, P < 0.05). This increase was compared with a control measurement with a flowmeter in the aorta. We also compared 6 control hearts to 4 hearts in which no-reflow was induced by the occlusion and reperfusion of a coronary artery. Using average MB velocity and average density of MB per unit of surface as two ULM quantitative markers of perfusion, we were able to detect areas of coronary no-reflow in good agreement with a control anatomical pathology analysis of the cardiac tissue. In the no-reflow zone, we measured an average perfusion of 204 ± 305 MB/mm2 compared to 3182 ± 1302 MB/mm2 in the surrounding re-perfused area. INTERPRETATION: We demonstrated this approach can directly image and quantify coronary microvascular obstruction and no-reflow on large mammal perfused hearts. This is a first step for noninvasive, quantitative and affordable assessment of the coronary microcirculation function and particularly coronary microvascular anatomy in the infarcted heart. This approach has the potential to be extended to other clinical situations characterized by microvascular dysfunction. FUNDING: This study was supported by the French National Research Agency (ANR) under ANR-21-CE19-0002 grant agreement.


Asunto(s)
Microscopía , Infarto del Miocardio , Porcinos , Femenino , Animales , Microcirculación , Prueba de Estudio Conceptual , Infarto del Miocardio/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Mamíferos
11.
Elife ; 122023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37551870

RESUMEN

Anthracyclines, such as doxorubicin (Dox), are widely used chemotherapeutic agents for the treatment of solid tumors and hematologic malignancies. However, they frequently induce cardiotoxicity leading to dilated cardiomyopathy and heart failure. This study sought to investigate the role of the exchange protein directly activated by cAMP (EPAC) in Dox-induced cardiotoxicity and the potential cardioprotective effects of EPAC inhibition. We show that Dox induces DNA damage and cardiomyocyte cell death with apoptotic features. Dox also led to an increase in both cAMP concentration and EPAC1 activity. The pharmacological inhibition of EPAC1 (with CE3F4) but not EPAC2 alleviated the whole Dox-induced pattern of alterations. When administered in vivo, Dox-treated WT mice developed a dilated cardiomyopathy which was totally prevented in EPAC1 knock-out (KO) mice. Moreover, EPAC1 inhibition potentiated Dox-induced cell death in several human cancer cell lines. Thus, EPAC1 inhibition appears as a potential therapeutic strategy to limit Dox-induced cardiomyopathy without interfering with its antitumoral activity.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Ratones , Humanos , Animales , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Cardiotoxicidad , Cardiomiopatía Dilatada/patología , Doxorrubicina/metabolismo , Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Ratones Noqueados , Apoptosis
12.
JACC Cardiovasc Imaging ; 15(7): 1193-1208, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798395

RESUMEN

BACKGROUND: Direct assessment of the coronary microcirculation has long been hampered by the limited spatial and temporal resolutions of cardiac imaging modalities. OBJECTIVES: The purpose of this study was to demonstrate 3-dimensional (3D) coronary ultrasound localization microscopy (CorULM) of the whole heart beyond the acoustic diffraction limit (<20 µm resolution) at ultrafast frame rate (>1000 images/s). METHODS: CorULM was performed in isolated beating rat hearts (N = 6) with ultrasound contrast agents (Sonovue, Bracco), using an ultrasonic matrix transducer connected to a high channel-count ultrafast electronics. We assessed the 3D coronary microvascular anatomy, flow velocity, and flow rate of beating hearts under normal conditions, during vasodilator adenosine infusion, and during coronary occlusion. The coronary vasculature was compared with micro-computed tomography performed on the fixed heart. In vivo transthoracic CorULM was eventually assessed on anaesthetized rats (N = 3). RESULTS: CorULM enables the 3D visualization of the coronary vasculature in beating hearts at a scale down to microvascular structures (<20 µm resolution). Absolute flow velocity estimates range from 10 mm/s in tiny arterioles up to more than 300 mm/s in large arteries. Fitting to a power law, the flow rate-radius relationship provides an exponent of 2.61 (r2 = 0.96; P < 0.001), which is consistent with theoretical predictions and experimental validations of scaling laws in vascular trees. A 2-fold increase of the microvascular coronary flow rate is found in response to adenosine, which is in good agreement with the overall perfusion flow rate measured in the aorta (control measurement) that increased from 8.80 ± 1.03 mL/min to 16.54 ± 2.35 mL/min (P < 0.001). The feasibility of CorULM was demonstrated in vivo for N = 3 rats. CONCLUSIONS: CorULM provides unprecedented insights into the anatomy and function of coronary arteries at the microvasculature level in beating hearts. This new technology is highly translational and has the potential to become a major tool for the clinical investigation of the coronary microcirculation.


Asunto(s)
Vasos Coronarios , Microscopía , Adenosina , Animales , Circulación Coronaria , Vasos Coronarios/diagnóstico por imagen , Microscopía/métodos , Valor Predictivo de las Pruebas , Ratas , Microtomografía por Rayos X
13.
J Biol Chem ; 285(48): 37240-50, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20847056

RESUMEN

In the heart, the energy supplied by mitochondria to myofibrils is continuously and finely tuned to the contraction requirement over a wide range of cardiac loads. This process is mediated both by the creatine kinase (CK) shuttle and by direct ATP transfer. The aim of this study was to identify the contribution of energy transfer pathways at different cardiac performance levels. For this, five protocols of (31)P NMR inversion and saturation transfer experiments were performed at different performance levels on Langendorff perfused rat hearts. The cardiac performance was changed either through variation of external calcium in the presence or absence of isoprenaline or through variation of LV balloon inflation. The recordings were analyzed by mathematical models composed on the basis of different energy transfer pathway configurations. According to our results, the total CK unidirectional flux was relatively stable when the cardiac performance was changed by increasing the calcium concentration or variation of LV balloon volume. The stability of total CK unidirectional flux is lost at extreme energy demand levels leading to a rise in inorganic phosphate, a drop of ATP and phosphocreatine, a drop of total CK unidirectional flux, and to a bypass of CK shuttle by direct ATP transfer. Our results provide experimental evidence for the existence of two pathways of energy transfer, direct ATP transfer, and PCr transfer through the CK shuttle, whose contribution may vary depending on the metabolic status of the heart.


Asunto(s)
Metabolismo Energético , Corazón/fisiología , Mitocondrias/metabolismo , Miofibrillas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Creatina Quinasa/metabolismo , Técnicas In Vitro , Espectroscopía de Resonancia Magnética , Masculino , Mitocondrias/química , Modelos Teóricos , Miocardio/química , Miocardio/enzimología , Miocardio/metabolismo , Miofibrillas/química , Perfusión , Ratas , Ratas Wistar
14.
Circ Res ; 105(8): 784-92, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19745166

RESUMEN

RATIONALE: Multiple cyclic nucleotide phosphodiesterases (PDEs) degrade cAMP in cardiomyocytes but the role of PDEs in controlling cAMP signaling during pathological cardiac hypertrophy is poorly defined. OBJECTIVE: Evaluate the beta-adrenergic regulation of cardiac contractility and characterize the changes in cardiomyocyte cAMP signals and cAMP-PDE expression and activity following cardiac hypertrophy. METHODS AND RESULTS: Cardiac hypertrophy was induced in rats by thoracic aortic banding over a time period of 5 weeks and was confirmed by anatomic measurements and echocardiography. Ex vivo myocardial function was evaluated in Langendorff-perfused hearts. Engineered cyclic nucleotide-gated (CNG) channels were expressed in single cardiomyocytes to monitor subsarcolemmal cAMP using whole-cell patch-clamp recordings of the associated CNG current (I(CNG)). PDE variant activity and protein level were determined in purified cardiomyocytes. Aortic stenosis rats exhibited a 67% increase in heart weight compared to sham-operated animals. The inotropic response to maximal beta-adrenergic stimulation was reduced by approximately 54% in isolated hypertrophied hearts, along with a approximately 32% decrease in subsarcolemmal cAMP levels in hypertrophied myocytes. Total cAMP hydrolytic activity as well as PDE3 and PDE4 activities were reduced in hypertrophied myocytes, because of a reduction of PDE3A, PDE4A, and PDE4B, whereas PDE4D was unchanged. Regulation of beta-adrenergic cAMP signals by PDEs was blunted in hypertrophied myocytes, as demonstrated by the diminished effects of IBMX (100 micromol/L) and of both the PDE3 inhibitor cilostamide (1 micromol/L) and the PDE4 inhibitor Ro 201724 (10 micromol/L). CONCLUSIONS: Beta-adrenergic desensitization is accompanied by a reduction in cAMP-PDE and an altered modulation of beta-adrenergic cAMP signals in cardiac hypertrophy.


Asunto(s)
Cardiomegalia/enzimología , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Regulación Enzimológica de la Expresión Génica , Miocitos Cardíacos/enzimología , Sistemas de Mensajero Secundario , 1-Metil-3-Isobutilxantina/farmacología , 4-(3-Butoxi-4-metoxibencil)-2-imidazolidinona/farmacología , Animales , Estenosis de la Válvula Aórtica/enzimología , Estenosis de la Válvula Aórtica/patología , Cardiomegalia/patología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/patología , Tamaño de los Órganos , Inhibidores de Fosfodiesterasa 4 , Inhibidores de Fosfodiesterasa/farmacología , Quinolonas/farmacología , Ratas , Ratas Wistar
15.
Pflugers Arch ; 460(4): 731-41, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20585956

RESUMEN

It has been recently shown that beta-adrenergic receptors are able to activate phospholipase C via the cyclic adenosine monophosphate-binding protein Epac. This new interconnection may participate in isoproterenol (Iso)-induced preconditioning. We evaluated here whether Epac could induce PKCepsilon activation and could play a role in ischemic preconditioning through the phosphorylation of connexin43 (Cx43) and changes in gap junctional intercellular communication (GJIC). In cultured rat neonatal cardiomyocytes, we showed that in response to Iso and 8-CPT, a specific Epac activator, PKCepsilon content was increased in particulate fractions of cell lysates independently of protein kinase A (PKA). This was associated with an increased Cx43 phosphorylation. Both Iso and 8-CPT induced an increase in GJIC that was blocked by the PKC inhibitor bisindolylmaleimide. Interestingly, inhibition of PKA partly suppressed both Iso-induced increases in Cx43 phosphorylation and in GJIC. The same PKCepsilon-dependent Cx43 phosphorylation by beta-adrenergic stimulation via Epac was found in adult rat hearts. However, in contrast with Iso that induced a preconditioning effect, perfusion of isolated hearts with 8-CPT prior to ischemia failed to improve the post-ischemia functional recovery. In conclusion, Epac stimulation induces PKCepsilon activation and Cx43 phosphorylation with an increase in GJIC, but Epac activation does not induce preconditioning to ischemia in contrast with beta-adrenergic stimulation.


Asunto(s)
Conexina 43/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Precondicionamiento Isquémico Miocárdico , Miocitos Cardíacos/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Western Blotting , Comunicación Celular/efectos de los fármacos , Comunicación Celular/fisiología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/fisiología , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Factores de Intercambio de Guanina Nucleótido/efectos de los fármacos , Isoproterenol/farmacología , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Cultivo de Órganos , Fosforilación , Proteína Quinasa C-epsilon/metabolismo , Ratas , Teofilina/análogos & derivados , Teofilina/farmacología
16.
Phys Med Biol ; 65(21): 215004, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33104523

RESUMEN

Calcific aortic stenosis (CAS) is associated with advanced age and comorbidities, therefore a non-invasive therapy for it would be beneficial. We previously demonstrated that ultrasound therapy improved calcified bioprosthetic valve function in an open chest model. For translational applications, we tested non-invasive ultrasound therapy (NIUT) transthoracically on swine aortic valves and investigated the need for antithrombotic treatment as a follow-up. Primary objective: feasibility and safety of NIUT. Secondary objectives: occurrence, severity and evolution of side effects during therapy and at 1 month follow-up. The device (Valvosoft, Cardiawave) consisted of an electronically steered multi-element transducer and a 2D echocardiographic probe. Three groups of swine received treatment on aortic valves: NIUT (group 1; n = 10); NIUT and 1 month antithrombotic treatment (group 2; n = 5); sham group (group 3; n = 4). Feasibility was successfully reached in all treated swine (n = 15) and no life-threatening arrhythmia were detected. Non-sustained ventricular tachycardia occurred during the procedure in seven swine. Decrease or interruption of NIUT ended arrhythmia. Histopathology revealed no valve or surrounding tissue damage and echocardiography revealed no valvular dysfunction. Only one animal had side effects [right ventricle (RV) dilatation], but the RV normalized after therapy cessation with no sequelae at follow-up. No disturbance in biological markers nor valve thrombosis were observed at follow-up. Antithrombotic treatment did not demonstrate any advantage. Survival at 30 d was 100%. We demonstrated, in vivo, the feasibility and safety of transthoracic NIUT on aortic valves in a swine model without serious adverse events. We expect this first-time transthoracic delivery of NIUT to pave the way towards a new non-invasive approach to valve softening in human CAS to restore valve function.


Asunto(s)
Válvula Aórtica , Seguridad , Porcinos , Terapia por Ultrasonido/efectos adversos , Animales , Válvula Aórtica/diagnóstico por imagen , Ecocardiografía , Estudios de Factibilidad , Humanos , Masculino
17.
Biochem Biophys Res Commun ; 389(1): 145-9, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19715668

RESUMEN

Cistus ladaniferus L. (Cistaceae) is a medicinal plant originated from the Mediterranean region which exerts different pharmacological effects. In the present study, our goal was to examine whether the plant possessed antihypertensive properties. Aqueous extract of Cistus leaves (AEC, 500mg/kg/day) reduced systemic blood pressure (SBP) in two animal models of hypertension, the l-NAME and renovascular two kidney-one clip (2K-1C) hypertensive rats. In the former, AEC prevented the increase in SBP when co-administered with l-NAME during four weeks (164+/-3mm Hg in l-NAME vs. 146+/-1mm Hg in l-NAME+AEC, p<0.001). In the latter, AEC reversed the increase in SBP when administered during four weeks after installation of the hypertension (146+/-5mm Hg with AEC vs. 179+/-6mm Hg without, p<0.05). AEC treatment also reversed the endothelial dysfunction observed in both animal models of hypertension. A direct effect on cardiac and vascular tissue was also tested by examining the contractile effects of AEC in rat isolated aortic rings and Langendorff perfused hearts. AEC (10mg/L) had no effect on left ventricular developed pressure and heart rate in isolated perfused heart. However, AEC produced a strong relaxation of pre-contracted rat aortic rings (80+/-2% relaxation, n=25). When the rings were denuded from endothelium or were incubated with 1mM Nomega-nitro-l-arginine (l-NNA), the relaxant effect of AEC was lost. We conclude that C. ladaniferus possesses antihypertensive properties which are mainly due to an endothelium-dependent vasodilatory action.


Asunto(s)
Antihipertensivos/farmacología , Cistus/química , Endotelio Vascular/efectos de los fármacos , Extractos Vegetales/farmacología , Vasodilatadores/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Corazón/efectos de los fármacos , Hipertensión/fisiopatología , NG-Nitroarginina Metil Éster/farmacología , Ratas , Ratas Wistar , Agua/química
18.
IEEE Trans Med Imaging ; 38(8): 1852-1857, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30735989

RESUMEN

Ultrafast acoustoelectric imaging (UAI) is a novel method for the mapping of biological current densities, which may improve the diagnosis and monitoring of cardiac activation diseases such as arrhythmias. This paper evaluates the feasibility of performing UAI in beating rat hearts. A previously described system based on a 256-channel ultrasound research platform fitted with a 5-MHz linear array was used for simultaneous UAI, ultrafast B-mode, and electrocardiogram (ECG) recordings. In this paper, rat hearts (n = 4) were retroperfused within a Langendorff isolated heart system. A pair of Ag/Cl electrodes were positioned on the epicardium to simultaneously record ECG and UAI signals for imaging frame rates of up to 1000 Hz and a mechanical index of 1.3. To account for the potential effect of motion on the UAI maps, acquisitions for n = 3 hearts were performed with and without suppression of the mechanical contraction using 2,3-butanedione monoxime. Current densities were detected for all four rats in the region of the atrio-ventricular node, with an average contrast-to-noise ratios of 12. The UAI signals' frequency matched the sinus rhythm, even without mechanical contraction, suggesting that the signals measured correspond to physiological electrical activation. UAI signals appeared at the apex and within the ventricular walls with a delay estimated at 29 ms. Finally, the signals from different electrode positions along the myocardium wall showed the possibility of mapping the electrical activation throughout the heart. These results show the potential of UAI for cardiac activation mapping in vivo and in real time.


Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Técnicas Electrofisiológicas Cardíacas/métodos , Corazón/diagnóstico por imagen , Contracción Miocárdica/fisiología , Animales , Estudios de Factibilidad , Corazón/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
19.
Diabetes ; 56(3): 786-94, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17327449

RESUMEN

AMP-activated protein kinase (AMPK) plays an important role in controlling energy homeostasis and is envisioned as a promising target to treat metabolic disorders. In the heart, AMPK is involved in short-term regulation and in transcriptional control of proteins involved in energy metabolism. Here, we investigated whether deletion of AMPKalpha2, the main cardiac catalytic isoform, alters mitochondrial function and biogenesis. Body weight, heart weight, and AMPKalpha1 expression were similar in control littermate and AMPKalpha2(-/-) mice. Despite normal oxygen consumption in perfused hearts, maximal oxidative capacity, measured using saponin permeabilized cardiac fibers, was approximately 30% lower in AMPKalpha2(-/-) mice with octanoate, pyruvate, or glutamate plus malate but not with succinate as substrates, showing an impairment at complex I of the respiratory chain. This effect was associated with a 25% decrease in mitochondrial cardiolipin content, the main mitochondrial membrane phospholipid that is crucial for complex I activity, and with a 13% decrease in mitochondrial content of linoleic acid, the main fatty acid of cardiolipins. The decrease in cardiolipin content could be explained by mRNA downregulation of rate-limiting enzymes of both cardiolipin synthesis (CTP:PA cytidylyltransferase) and remodeling (acyl-CoA:lysocardiolipin acyltransferase 1). These data reveal a new role for AMPKalpha2 subunit in the regulation of cardiac muscle oxidative capacity via cardiolipin homeostasis.


Asunto(s)
Cardiolipinas/metabolismo , Homeostasis/fisiología , Mitocondrias Cardíacas/metabolismo , Complejos Multienzimáticos/metabolismo , Miocardio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Metabolismo Energético , Ácidos Grasos/metabolismo , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Glucosa/metabolismo , Masculino , Ratones , Complejos Multienzimáticos/genética , Miocardio/citología , Miocitos Cardíacos/ultraestructura , Ácido Oléico/metabolismo , Fosfolípidos/metabolismo , Proteínas Serina-Treonina Quinasas/genética
20.
Phys Med Biol ; 63(2): 025003, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29235453

RESUMEN

In the past decade, a handful but growing number of groups have reported worldwide successful low intensity focused ultrasound induced neurostimulation trials on rodents. Its effects range from movement elicitations to reduction of anesthesia time or reduction of the duration of drug induced seizures. The mechanisms underlying ultrasonic neuromodulation are still not fully understood. Given the low intensities used in most of the studies, a mechanical effect is more likely to be responsible for the neuromodulation effect, but a clear description of the thermal and mechanical effects is necessary to optimize clinical applications. Based on five studies settings, we calculated the temperature rise and thermal doses in order to evaluate its implication in the neuromodulation phenomenon. Our retrospective analysis shows thermal rise ranging from 0.002 °C to 0.8 °C in the brain for all setups, except for one setup for which the temperature increase is estimated to be as high as 7 °C. We estimate that in the latter case, temperature rise cannot be neglected as a possible cause of neuromodulation. Simulations results were supported by temperature measurements on a mouse with two different sets of parameters. Although the calculated temperature is compatible with the absence of visible thermal lesions on the skin, it is high enough to impact brain circuits. Our study highlights the usefulness of performing thermal simulations prior to experiment in order to fully take into account not only the impact of the peak intensity but also pulse duration and pulse repetition.


Asunto(s)
Regulación de la Temperatura Corporal/efectos de la radiación , Temperatura Corporal/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Terapia por Estimulación Eléctrica/métodos , Terapia por Ultrasonido/métodos , Animales , Temperatura Corporal/efectos de la radiación , Ratones , Ratas , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA