Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.382
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(6): 1282-1294.e20, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849372

RESUMEN

Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.


Asunto(s)
Desaminasas APOBEC/genética , Neoplasias/genética , Desaminasas APOBEC/metabolismo , Línea Celular , Línea Celular Tumoral , ADN/metabolismo , Análisis Mutacional de ADN/métodos , Bases de Datos Genéticas , Exoma , Genoma Humano/genética , Xenoinjertos , Humanos , Mutagénesis , Mutación/genética , Tasa de Mutación , Retroelementos , Secuenciación del Exoma/métodos
2.
Cell ; 167(1): 260-274.e22, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27641504

RESUMEN

The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias de la Mama , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Biomarcadores Farmacológicos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Pruebas de Farmacogenómica , Células Tumorales Cultivadas
3.
Cell ; 166(3): 740-754, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27397505

RESUMEN

Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Análisis de Varianza , Línea Celular Tumoral , Metilación de ADN , Resistencia a Antineoplásicos/genética , Dosificación de Gen , Humanos , Modelos Genéticos , Mutación , Neoplasias/genética , Oncogenes , Medicina de Precisión
4.
Cell ; 161(4): 933-45, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957691

RESUMEN

In Rspondin-based 3D cultures, Lgr5 stem cells from multiple organs form ever-expanding epithelial organoids that retain their tissue identity. We report the establishment of tumor organoid cultures from 20 consecutive colorectal carcinoma (CRC) patients. For most, organoids were also generated from adjacent normal tissue. Organoids closely recapitulate several properties of the original tumor. The spectrum of genetic changes within the "living biobank" agrees well with previous large-scale mutational analyses of CRC. Gene expression analysis indicates that the major CRC molecular subtypes are represented. Tumor organoids are amenable to high-throughput drug screens allowing detection of gene-drug associations. As an example, a single organoid culture was exquisitely sensitive to Wnt secretion (porcupine) inhibitors and carried a mutation in the negative Wnt feedback regulator RNF43, rather than in APC. Organoid technology may fill the gap between cancer genetics and patient trials, complement cell-line- and xenograft-based drug studies, and allow personalized therapy design. PAPERCLIP.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Organoides , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Oncogénicas/metabolismo , Técnicas de Cultivo de Órganos , Organoides/efectos de los fármacos , Medicina de Precisión , Ubiquitina-Proteína Ligasas
5.
Mol Cell ; 81(3): 426-441.e8, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545059

RESUMEN

Eukaryotic genomes replicate via spatially and temporally regulated origin firing. Cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) promote origin firing, whereas the S phase checkpoint limits firing to prevent nucleotide and RPA exhaustion. We used chemical genetics to interrogate human DDK with maximum precision, dissect its relationship with the S phase checkpoint, and identify DDK substrates. We show that DDK inhibition (DDKi) leads to graded suppression of origin firing and fork arrest. S phase checkpoint inhibition rescued origin firing in DDKi cells and DDK-depleted Xenopus egg extracts. DDKi also impairs RPA loading, nascent-strand protection, and fork restart. Via quantitative phosphoproteomics, we identify the BRCA1-associated (BRCA1-A) complex subunit MERIT40 and the cohesin accessory subunit PDS5B as DDK effectors in fork protection and restart. Phosphorylation neutralizes autoinhibition mediated by intrinsically disordered regions in both substrates. Our results reveal mechanisms through which DDK controls the duplication of large vertebrate genomes.


Asunto(s)
Replicación del ADN , Origen de Réplica , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Puntos de Control de la Fase S del Ciclo Celular , Especificidad por Sustrato , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xenopus laevis
6.
Nature ; 603(7899): 166-173, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35197630

RESUMEN

Combinations of anti-cancer drugs can overcome resistance and provide new treatments1,2. The number of possible drug combinations vastly exceeds what could be tested clinically. Efforts to systematically identify active combinations and the tissues and molecular contexts in which they are most effective could accelerate the development of combination treatments. Here we evaluate the potency and efficacy of 2,025 clinically relevant two-drug combinations, generating a dataset encompassing 125 molecularly characterized breast, colorectal and pancreatic cancer cell lines. We show that synergy between drugs is rare and highly context-dependent, and that combinations of targeted agents are most likely to be synergistic. We incorporate multi-omic molecular features to identify combination biomarkers and specify synergistic drug combinations and their active contexts, including in basal-like breast cancer, and microsatellite-stable or KRAS-mutant colon cancer. Our results show that irinotecan and CHEK1 inhibition have synergistic effects in microsatellite-stable or KRAS-TP53 double-mutant colon cancer cells, leading to apoptosis and suppression of tumour xenograft growth. This study identifies clinically relevant effective drug combinations in distinct molecular subpopulations and is a resource to guide rational efforts to develop combinatorial drug treatments.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Neoplasias Pancreáticas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Combinación de Medicamentos , Sinergismo Farmacológico , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
7.
Am J Hum Genet ; 111(1): 150-164, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181731

RESUMEN

Treatments for neurodegenerative disorders remain rare, but recent FDA approvals, such as lecanemab and aducanumab for Alzheimer disease (MIM: 607822), highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use summary-data-based Mendelian randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer disease, 3 amyotrophic lateral sclerosis (MIM: 105400), 5 Lewy body dementia (MIM: 127750), 46 Parkinson disease (MIM: 605909), and 9 progressive supranuclear palsy (MIM: 601104) target genes passing multiple test corrections (pSMR_multi < 2.95 × 10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics, classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these, 69.8% are expressed in the disease-relevant cell type from single-nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development, and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as riluzole in Alzheimer disease. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Recursos Comunitarios , Multiómica , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Análisis de la Aleatorización Mendeliana
8.
Am J Hum Genet ; 110(1): 105-119, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36493768

RESUMEN

Adult-onset cerebellar ataxias are a group of neurodegenerative conditions that challenge both genetic discovery and molecular diagnosis. In this study, we identified an intronic (GAA) repeat expansion in fibroblast growth factor 14 (FGF14). Genetic analysis of 95 Australian individuals with adult-onset ataxia identified four (4.2%) with (GAA)>300 and a further nine individuals with (GAA)>250. PCR and long-read sequence analysis revealed these were pure (GAA) repeats. In comparison, no control subjects had (GAA)>300 and only 2/311 control individuals (0.6%) had a pure (GAA)>250. In a German validation cohort, 9/104 (8.7%) of affected individuals had (GAA)>335 and a further six had (GAA)>250, whereas 10/190 (5.3%) control subjects had (GAA)>250 but none were (GAA)>335. The combined data suggest (GAA)>335 are disease causing and fully penetrant (p = 6.0 × 10-8, OR = 72 [95% CI = 4.3-1,227]), while (GAA)>250 is likely pathogenic with reduced penetrance. Affected individuals had an adult-onset, slowly progressive cerebellar ataxia with variable features including vestibular impairment, hyper-reflexia, and autonomic dysfunction. A negative correlation between age at onset and repeat length was observed (R2 = 0.44, p = 0.00045, slope = -0.12) and identification of a shared haplotype in a minority of individuals suggests that the expansion can be inherited or generated de novo during meiotic division. This study demonstrates the power of genome sequencing and advanced bioinformatic tools to identify novel repeat expansions via model-free, genome-wide analysis and identifies SCA50/ATX-FGF14 as a frequent cause of adult-onset ataxia.


Asunto(s)
Ataxia Cerebelosa , Factores de Crecimiento de Fibroblastos , Ataxia de Friedreich , Expansión de Repetición de Trinucleótido , Adulto , Humanos , Ataxia/genética , Australia , Ataxia Cerebelosa/genética , Ataxia de Friedreich/genética , Expansión de Repetición de Trinucleótido/genética
9.
Proc Natl Acad Sci U S A ; 120(49): e2312905120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011573

RESUMEN

Electron cryomicroscopy can, in principle, determine the structures of most biological molecules but is currently limited by access, specimen preparation difficulties, and cost. We describe a purpose-built instrument operating at 100 keV-including advances in electron optics, detection, and processing-that makes structure determination fast and simple at a fraction of current costs. The instrument attains its theoretical performance limits, allowing atomic resolution imaging of gold test specimens and biological molecular structure determination in hours. We demonstrate its capabilities by determining the structures of eleven different specimens, ranging in size from 140 kDa to 2 MDa, using a fraction of the data normally required. CryoEM with a microscope designed specifically for high-efficiency, on-the-spot imaging of biological molecules will expand structural biology to a wide range of previously intractable problems.

10.
Eur J Immunol ; : e2451145, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39094122

RESUMEN

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection can lead to life-threatening clinical manifestations. Patients with cardiovascular disease (CVD) are at higher risk for severe courses of COVID-19. So far, however, there are hardly any strategies for predicting the course of SARS-CoV-2 infection in CVD patients at hospital admission. Thus, we investigated whether this prediction is achievable by prospectively analysing the blood immunophenotype of 94 nonvaccinated participants, including uninfected and acutely SARS-CoV-2-infected CVD patients and healthy donors, using a 36-colour spectral flow cytometry panel. Unsupervised data analysis revealed little differences between healthy donors and CVD patients, whereas the distribution of the cell populations changed dramatically in SARS-CoV-2-infected CVD patients. The latter had more mature NK cells, activated monocyte subsets, central memory CD4+ T cells, and plasmablasts but fewer dendritic cells, CD16+ monocytes, innate lymphoid cells, and CD8+ T-cell subsets. Moreover, we identified an immune signature characterised by CD161+ T cells, intermediate effector CD8+ T cells, and natural killer T (NKT) cells that is predictive for CVD patients with a severe course of COVID-19. Thus, intensified immunophenotype analyses can help identify patients at risk of severe COVID-19 at hospital admission, improving clinical outcomes through specific treatment.

11.
Ann Neurol ; 96(2): 332-342, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38757636

RESUMEN

OBJECTIVE: This study was undertaken to delineate 21-year sex-specific trends in recurrence and postrecurrence mortality. METHODS: Between 2000 and 2020, first-ever ischemic stroke (IS) patients, ascertained from the population-based BASIC (Brain Attack Surveillance in Corpus Christi) project in South Texas, were followed for recurrent stroke and all-cause mortality until December 31, 2020. Multivariable regression models with an interaction between calendar year and sex were used to estimate sex-specific trends and sex differences in recurrence and postrecurrence mortality. RESULTS: Of the 6,057 IS patients (median age = 69 years, 49.8% women), 654 (10.8%) had a recurrence and 399 (47.7%) had postrecurrence mortality during 5 years of follow-up. In 2000, women had 2.5% higher albeit non-statistically significant 5-year risk of recurrence than men in absolute scale. With the trend declining in women by 7.6% (95% confidence interval [CI] = -10.8 to -4.5%) and in men by 3.6% (95% CI = -6.5% to -0.7%), the risk at the end of the study period was 1.5% (95% CI = -0.3% to 3.6%) lower among women than men. For postrecurrence mortality, the risk was 10.2% lower among women in 2000, but the sex difference was 3.3% by the end of the period, which was due to a larger overall increase in the risk among women than men over the entire time period. INTERPRETATION: The declines in recurrent stroke suggest successful secondary stroke prevention, especially in women. However, the continued high postrecurrence mortality among both sexes at the end of study period emphasizes the need for ongoing interventions to improve prognosis in those who have had recurrent cerebrovascular events. ANN NEUROL 2024;96:332-342.


Asunto(s)
Recurrencia , Caracteres Sexuales , Accidente Cerebrovascular , Humanos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Texas/epidemiología , Accidente Cerebrovascular/mortalidad , Accidente Cerebrovascular/epidemiología , Anciano de 80 o más Años , Factores Sexuales , Vigilancia de la Población/métodos , Accidente Cerebrovascular Isquémico/mortalidad , Accidente Cerebrovascular Isquémico/epidemiología
12.
FASEB J ; 38(10): e23629, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38742770

RESUMEN

The molecular and cellular basis of health in human tendons remains poorly understood. Among human tendons, hamstring tendon has markedly low pathology and can provide a prototypic healthy tendon reference. The aim of this study was to determine the transcriptomes and location of all cell types in healthy hamstring tendon. Using single nucleus RNA sequencing, we profiled the transcriptomes of 10 533 nuclei from four healthy donors and identified 12 distinct cell types. We confirmed the presence of two fibroblast cell types, endothelial cells, mural cells, and immune cells, and identified cell types previously unreported in tendons, including different skeletal muscle cell types, satellite cells, adipocytes, and undefined nervous system cells. The location of these cell types within tendon was defined using spatial transcriptomics and imaging, and potential transcriptional networks and cell-cell interactions were analyzed. We demonstrate that fibroblasts have the highest number of potential cell-cell interactions in our dataset, are present throughout the tendon, and play an important role in the production and organization of extracellular matrix, thus confirming their role as key regulators of hamstring tendon homeostasis. Overall, our findings underscore the complexity of the cellular networks that underpin healthy human tendon function and the central role of fibroblasts as key regulators of hamstring tendon tissue homeostasis.


Asunto(s)
Perfilación de la Expresión Génica , Tendones Isquiotibiales , Transcriptoma , Humanos , Masculino , Adulto , Tendones Isquiotibiales/metabolismo , Fibroblastos/metabolismo , Femenino , Núcleo Celular/metabolismo , Núcleo Celular/genética , Matriz Extracelular/metabolismo , Tendones/metabolismo
14.
Nature ; 568(7753): 511-516, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971826

RESUMEN

Functional genomics approaches can overcome limitations-such as the lack of identification of robust targets and poor clinical efficacy-that hamper cancer drug development. Here we performed genome-scale CRISPR-Cas9 screens in 324 human cancer cell lines from 30 cancer types and developed a data-driven framework to prioritize candidates for cancer therapeutics. We integrated cell fitness effects with genomic biomarkers and target tractability for drug development to systematically prioritize new targets in defined tissues and genotypes. We verified one of our most promising dependencies, the Werner syndrome ATP-dependent helicase, as a synthetic lethal target in tumours from multiple cancer types with microsatellite instability. Our analysis provides a resource of cancer dependencies, generates a framework to prioritize cancer drug targets and suggests specific new targets. The principles described in this study can inform the initial stages of drug development by contributing to a new, diverse and more effective portfolio of cancer drug targets.


Asunto(s)
Sistemas CRISPR-Cas/genética , Descubrimiento de Drogas/métodos , Edición Génica , Terapia Molecular Dirigida/métodos , Neoplasias/genética , Neoplasias/terapia , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Femenino , Genoma Humano/genética , Humanos , Ratones , Inestabilidad de Microsatélites , Trasplante de Neoplasias , Neoplasias/clasificación , Neoplasias/patología , Especificidad de Órganos , Reproducibilidad de los Resultados , Mutaciones Letales Sintéticas/genética , Síndrome de Werner/genética , Helicasa del Síndrome de Werner/genética
15.
Proc Natl Acad Sci U S A ; 119(19): e2118597119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35522708

RESUMEN

SignificancePhase transitions, the changes between states of matter with distinct electronic, magnetic, or structural properties, are at the center of condensed matter physics and underlie valuable technologies. First-order phase transitions are intrinsically heterogeneous. When driven by ultrashort excitation, nanoscale phase regions evolve rapidly, which has posed a significant experimental challenge to characterize. The newly developed laser-pumped X-ray nanodiffraction imaging technique reported here has simultaneous 100-ps temporal and 25-nm spatial resolutions. This approach reveals pathways of the nanoscale structural rearrangement upon ultrafast optical excitation, different from those transitions under slowly varying parameters. The spatiotemporally resolved structural characterization provides crucial nanoscopic insights into ultrafast phase transitions and opens opportunities for controlling nanoscale phases on ultrafast time scales.

16.
J Mol Cell Cardiol ; 188: 90-104, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38382296

RESUMEN

The role of erythropoietin (EPO) has extended beyond hematopoiesis to include cytoprotection, inotropy, and neurogenesis. Extra-renal EPO has been reported for multiple tissue/cell types, but the physiological relevance remains unknown. Although the EPO receptor is expressed by multiple cardiac cell types and human recombinant EPO increases contractility and confers cytoprotection against injury, whether the heart produces physiologically meaningful amounts of EPO in vivo is unclear. We show a distinct circadian rhythm of cardiac EPO mRNA expression in adult mice and increased mRNA expression during embryogenesis, suggesting physiological relevance to cardiac EPO production throughout life. We then generated constitutive, cardiomyocyte-specific EPO knockout mice driven by the Mlc2v promoter (EPOfl/fl:Mlc2v-cre+/-; EPOΔ/Δ-CM). During cardiogenesis, cardiac EPO mRNA expression and cellular proliferation were reduced in EPOΔ/Δ-CM hearts. However, in adult EPOΔ/Δ- CM mice, total heart weight was preserved through increased cardiomyocyte cross-sectional area, indicating the reduced cellular proliferation was compensated for by cellular hypertrophy. Echocardiography revealed no changes in cardiac dimensions, with modest reductions in ejection fraction, stroke volume, and tachycardia, whereas invasive hemodynamics showed increased cardiac contractility and lusitropy. Paradoxically, EPO mRNA expression in the heart was elevated in adult EPOΔ/Δ-CM, along with increased serum EPO protein content and hematocrit. Using RNA fluorescent in situ hybridization, we found that Epo RNA colocalized with endothelial cells in the hearts of adult EPOΔ/Δ-CM mice, identifying the endothelial cells as a cell responsible for the EPO hyper-expression. Collectively, these data identify the first physiological roles for cardiomyocyte-derived EPO. We have established cardiac EPO mRNA expression is a complex interplay of multiple cell types, where loss of embryonic cardiomyocyte EPO production results in hyper-expression from other cells within the adult heart.


Asunto(s)
Células Endoteliales , Eritropoyetina , Animales , Ratones , Hiperplasia , Hibridación Fluorescente in Situ , Miocitos Cardíacos , ARN , ARN Mensajero/genética
17.
Stroke ; 55(5): 1174-1180, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38511342

RESUMEN

BACKGROUND: Patient-reported outcome measures (PROMs) describe health status from the perspective of the patient. There is growing interest in incorporating PROMs into clinical trials, but the extent that such measures are used in contemporary stroke trials is uncertain. We sought to determine how often acute stroke trials included PROMs as outcome measures and assessed the completeness of methodological reporting. METHODS: We searched MEDLINE for randomized controlled trials published in 9 high-impact journals between 2010 and 2020. Eligible studies were phase 2 or 3 trials that tested therapeutic interventions within 1 month of stroke onset. Using the trial's primary publication and protocol, we abstracted key study characteristics including all primary and secondary outcome measures. We defined PROMs as self-reported measures of quality of life, symptoms, or function collected without interpretation of an external party. RESULTS: Of 116 trials that met eligibility, 57 (49%) included at least 1 PROM. Of these, 41 trials (35%) included a PROM in its primary publication, while 16 (14%) identified a PROM in its protocol. Only 1 trial used a PROM as a primary outcome. Among the 57 total trials, the most commonly used measures were Euro-QOL (n=41, 72%), Stroke Impact Scale (n=10, 18%), and Short-Form 36 (n=6, 11%). Trials were more likely to include a PROM if they were published after 2016, were phase 3, or included only hemorrhagic stroke. Of the 41 trials that included a PROM in the primary publication, 40 (97%) provided PROM results, but only 9 (22%) found statistically significant differences between treatment groups. Quality of methodological reporting was generally poor. CONCLUSIONS: Half of contemporary acute stroke trials published in high-impact journals listed at least 1 PROM as a secondary outcome, but they played a minor role in the presentation of the final trial results. Inclusion of PROMs in acute stroke trials requires greater attention during both the design and reporting phases of the trial. REGISTRATION: URL: https://www.crd.york.ac.uk/PROSPERO/; Unique identifier: CRD42019128727.

18.
Stroke ; 55(1): 101-109, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134248

RESUMEN

BACKGROUND: Emergency medical services (EMS) is an important link in the stroke chain of recovery. Various prehospital quality metrics have been proposed for prehospital stroke care, but their individual impact is uncertain. We sought to measure associations between EMS quality metrics and downstream stroke care. METHODS: This is a retrospective analysis of a cohort of EMS-transported stroke patients assembled through a linkage between Michigan's EMS and stroke registries. We used multivariable regression to quantify the independent associations between EMS quality metric compliance (dispatch within 90 seconds of 911 call, prehospital stroke screen documentation [Prehospital stroke scale], glucose check, last known well time, maintenance of scene times ≤15 minutes, hospital prenotification, and intravenous line placement) and shorter door-to-CT times (door-to-CT ≤25), accounting for EMS recognition, age, sex, race, stroke subtype, severity, and duration of symptoms. We then developed a simple EMS quality score based on metrics associated with early CT and examined its associations with hospital stroke evaluation times, treatment, and patient outcomes. RESULTS: Five thousand seven hundred seven EMS-transported stroke cases were linked to prehospital records from January 2018 through June 2019. In multivariable analysis, prehospital stroke scale documentation (adjusted odds ratio, 1.4 [1.2-1.6]), glucose check (1.3 [1.1-1.6]), on-scene time ≤15 minutes (1.6 [1.4-1.9]), hospital prenotification ([2.0 [1.4-2.9]), and intravenous line placement (1.8 [1.5-2.1]) were independently associated with a door-to-CT ≤25 minutes. A 5-point quality score (1 point for each element) was therefore developed. In multivariable analysis, a 1-point higher EMS quality score was associated with a shorter time from EMS contact to CT (-9.2 [-10.6 to -7.8] minutes; P<0.001) and thrombolysis (-4.3 [-6.4 to -2.2] minutes; P<0.001), and higher odds of discharge to home (adjusted odds ratio, 1.1 [1.0-1.2]; P=0.002). CONCLUSIONS: Five EMS actions recommended by national guidelines were associated with rapid CT imaging. A simple quality score derived from these measures was also associated with faster stroke evaluation, greater odds of reperfusion treatment, and discharge to home.


Asunto(s)
Servicios Médicos de Urgencia , Accidente Cerebrovascular , Humanos , Estudios Retrospectivos , Terapia Trombolítica , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Glucosa
19.
Stroke ; 55(6): 1689-1698, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38738376

RESUMEN

The Get With The Guidelines-Stroke program which, began 20 years ago, is one of the largest and most important nationally representative disease registries in the United States. Its importance to the stroke community can be gauged by its sustained growth and widespread dissemination of findings that demonstrate sustained increases in both the quality of care and patient outcomes over time. The objectives of this narrative review are to provide a brief history of Get With The Guidelines-Stroke, summarize its major successes and impact, and highlight lessons learned. Looking to the next 20 years, we discuss potential challenges and opportunities for the program.


Asunto(s)
Accidente Cerebrovascular , Humanos , Historia del Siglo XXI , Guías de Práctica Clínica como Asunto/normas , Sistema de Registros , Accidente Cerebrovascular/terapia , Estados Unidos
20.
Stroke ; 55(6): 1507-1516, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38787926

RESUMEN

BACKGROUND: Delays in hospital presentation limit access to acute stroke treatments. While prior research has focused on patient-level factors, broader ecological and social determinants have not been well studied. We aimed to create a geospatial map of prehospital delay and examine the role of community-level social vulnerability. METHODS: We studied patients with ischemic stroke who arrived by emergency medical services in 2015 to 2017 from the American Heart Association Get With The Guidelines-Stroke registry. The primary outcome was time to hospital arrival after stroke (in minutes), beginning at last known well in most cases. Using Geographic Information System mapping, we displayed the geography of delay. We then used Cox proportional hazard models to study the relationship between community-level factors and arrival time (adjusted hazard ratios [aHR] <1.0 indicate delay). The primary exposure was the social vulnerability index (SVI), a metric of social vulnerability for every ZIP Code Tabulation Area ranging from 0.0 to 1.0. RESULTS: Of 750 336 patients, 149 145 met inclusion criteria. The mean age was 73 years, and 51% were female. The median time to hospital arrival was 140 minutes (Q1: 60 minutes, Q3: 458 minutes). The geospatial map revealed that many zones of delay overlapped with socially vulnerable areas (https://harvard-cga.maps.arcgis.com/apps/webappviewer/index.html?id=08f6e885c71b457f83cefc71013bcaa7). Cox models (aHR, 95% CI) confirmed that higher SVI, including quartiles 3 (aHR, 0.96 [95% CI, 0.93-0.98]) and 4 (aHR, 0.93 [95% CI, 0.91-0.95]), was associated with delay. Patients from SVI quartile 4 neighborhoods arrived 15.6 minutes [15-16.2] slower than patients from SVI quartile 1. Specific SVI themes associated with delay were a community's socioeconomic status (aHR, 0.80 [95% CI, 0.74-0.85]) and housing type and transportation (aHR, 0.89 [95% CI, 0.84-0.94]). CONCLUSIONS: This map of acute stroke presentation times shows areas with a high incidence of delay. Increased social vulnerability characterizes these areas. Such places should be systematically targeted to improve population-level stroke presentation times.


Asunto(s)
Hospitalización , Accidente Cerebrovascular Isquémico , Sistema de Registros , Tiempo de Tratamiento , Tiempo de Tratamiento/estadística & datos numéricos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Lagunas en las Evidencias , Accidente Cerebrovascular Isquémico/epidemiología , Accidente Cerebrovascular Isquémico/terapia , Hospitalización/estadística & datos numéricos , Estados Unidos/epidemiología , Análisis Espacio-Temporal , Mapeo Geográfico , Modelos de Riesgos Proporcionales , Servicios Médicos de Urgencia/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA