Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Environ Res ; 251(Pt 2): 118726, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518911

RESUMEN

Dye-sensitized solar cell (DSSC) using algal photosynthetic pigments has got rampant attention as it converts sunlight into electricity. Therefore, in this present research, the neutral lipid extracted from the green alga Scenedesmus sp. was used for biodiesel production, and concurrently, pigments extracted from the de-oiled biomass cake were used as a sensitizer in DSSC to evaluate its performance efficacy with and without PVDF (Polyvinylidene fluoride). Initially, neutral lipids extracted from the Scenedesmus sp. were converted to biodiesel with a yield of 72.9%, and the de-oiled biomass was subjected to pigment extraction (17.65 mg/g) to use as a sensitizer in DSSC. This study proposes two DSSC test models, i.e., PVDF (Polyvinylidene fluoride) - bound cell and cell without any PVDF binder. For the PVDF-coated DSSC, the average energy conversion efficiency reached about 14.3%, the open circuit voltage was 0.55 V, and the short circuit current was 144.5 mA. The unbound cells showed a reduction in efficiency, voltage, and current, and notably, efficiency of 10.44% on day 1 was decreased to 3.32%, and the open circuit voltage and short circuit current of 0.38V and 144 mA were decreased to 0.24V and 130 mA after 10 days, under 40 mW/cm2 input power. The PVDF-coated solar cell has maintained its efficiency range of 16.32%-11.22%, which is higher than the PVDF-unbound cell for a tested timeline of 30 days. The fill factor of 0.47 was observed in PVDF- unbound DSSC under 40 mW/cm2 as input power, while it was increased to 0.577 when PVDF was used as a binder. The PVDF-coated cell has low degradation compared with the PVDF-uncoated cell. These results offer dual benefits as the production of biodiesel from microalgal lipids and electricity generation from the DSSC using the pigments of biodiesel-extracted algal biomass.


Asunto(s)
Biocombustibles , Biomasa , Colorantes , Scenedesmus , Energía Solar , Biocombustibles/análisis , Colorantes/química , Polivinilos/química , Pigmentos Biológicos , Polímeros de Fluorocarbono
2.
Environ Res ; 241: 117628, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37956756

RESUMEN

In this study, phycoremediation of textile wastewater (TWW) by freshwater cyanobacterial strains such as sp., Oscillatoria sp. F01 and Oscillatoria sp. F02 was evaluated, and lipids were simultaneously extracted from biomass for biodiesel production. Onset of the study, Phormidium sp. and Oscillatoria sp. F01 has better growth rates, increased biomass production, high chlorophyll content, and efficient nutrient utilization in TWW compared to Oscillatoria sp. F02. Phormidium sp. showed 1.41 g/L dry weight, followed by Oscillatoria sp. F01 with 1.39 g/L and Oscillatoria sp. F02 with 1.02 g/L biomass. Both strains demonstrated their capability to elevate the pH level while reducing TDS and eliminating/reducing several nutrients such as nitrates, nitrites, phosphates, sulphates, sulphides, chlorides, calcium, sodium, and magnesium. Further, the total lipids extracted from the TWW-grown Phormidium sp., Oscillatoria sp. F01 and Oscillatoria sp. F02 was estimated to be 8.20, 13.70 and 11.20 %, respectively, on day 21, which was higher than the lipid content obtained from control cultures. Further, biodiesel produced from the lipids of all strains showed higher levels of C12:0, C16:0, C16:1, C18:1, C18:2, and C18:3 among all the fatty acids. Therefore, they can potentially offer a valuable source of lipids and diverse fatty acids for high-quality biodiesel production. This integrated system not only offers a solution for TWW treatment but also provides a feedstock for renewable fuel production simultaneously.


Asunto(s)
Cianobacterias , Microalgas , Oscillatoria , Aguas Residuales , Phormidium , Biocombustibles/microbiología , Biomasa , Ácidos Grasos , Nutrientes
3.
Environ Res ; 242: 117741, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38007075

RESUMEN

Several energy-related strategies and scenarios have been suggested to address concerns about rising global temperatures. In addition to using renewable energy, the improvement in energy efficiency of conventional systems is also in focus. Policies are already in place in many countries, including India, to address the energy needs of rural and small-scale enterprises by gasifying locally available, diverse agricultural leftovers. Although rice husk and groundnut shell are two commonly used agricultural leftovers in the southern part of India, their appropriate blending must be studied to improve their conversion efficiency in co-gasification. Therefore, the primary objective of this research is to construct a statistical model utilizing response surface methodology (RSM) to analyze the thermochemical co-gasification of the aforementioned biomass materials. Since RSM can predict optimum performance with limited experimental data, this could contribute to the identification of the performance and operating parameters of an open-core gasifier. The model predicts that the mixture containing 20% rice husk and working at an ER of 0.25 and a reduction zone inlet temperature of 879.9 °C will be CO-23.53%, H2-13.97%, and CH4-3.56%. In addition, the lower heating value and gas yield can be as high as 6.17 MJ/Nm3 and 2.369 m3/kg, respectively. This outcome can contribute to the effective utilization of biomass for energy supply in rural areas. However, the economic parameters must be analyzed to implement the same in any region.


Asunto(s)
Oryza , Gases , Temperatura , Biomasa , India
4.
Environ Res ; 257: 119369, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848998

RESUMEN

The growing presence of emerging pollutants (EPs) in aquatic environments, as well as their harmful impacts on the biosphere and humans, has become a global concern. Recent developments and advancements in pharmaceuticals, agricultural practices, industrial activities, and human personal care substances have paved the way for drastic changes in EP concentrations and impacts on the ecosystem. As a result, it is critical to mitigate EP's harmful effects before they jeopardize the ecological equilibrium of the overall ecosystem and the sustainable existence of life on Earth. This review comprehensively documented the types, origins, and remediation strategies of EPs, and underscored the significance of this study in the current context. We briefly stated the major classification of EPs based on their organic and inorganic nature. Furthermore, this review systematically evaluates the occurrence of EPs due to the fast-changing ecological scenarios and their impact on human health. Recent studies have critically discussed the emerging physical and chemical processes for EP removal, highlighting the limitations of conventional remediation technologies. We reviewed and presented the challenges associated with EP remediation and degradation using several methods, including physical and chemical methods, with the application of recent technologies. The EP types and various methods discussed in this review help the researchers understand the nature of present-day EPs and utilize an efficient method of choice for EP removal and management in the future for sustainable life and development activities on the planet.

5.
Environ Res ; 241: 117626, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37956754

RESUMEN

Cost is the crucial impediment in commercializing microalgal biodiesel. Therefore, cultivating microalgae in cost-effective nutrients reduces the upstream process cost remarkably. Thus, in this study, sugar cane bagasse hydrolysate (SBH) as a lucrative carbon supplement for Chlorococcum sp. and subsequent lipid extraction via an optimized solvent system for biodiesel production was investigated. Characterization of SBH revealed the presence of various monosaccharides and other sugar derivatives such as glucose, fructose, xylose, arabinose, etc. The maximum dry cell weight of 1.7 g/L was estimated in cultures grown in 10 mL SBH. Different solvents such as diethyl ether (DEE), chloroform (CHL), ethyl acetate (ETA), hexane (HEX), methanol (MET), ethanol (ETOH), acetone (ACE) and also combination of solvents (2:1 ratio) such as DEE: MET, CHL: MET, HEX: MET, HEX: ETOH was tested for lipid extraction efficacy. Among solvents used, 12.3% and 18.4% of lipids were extracted using CHL and CHL: MET, respectively, from 10 mL SBH amended cultures. However, the biodiesel yield was found to be similar at about 70.16 % in both SBH and no SBH-added cultures. The fatty acid profile of the biodiesel shows palmitic, oleic, linoleic, linolenic, and arachidonic acid as principal fatty acids. Further, the levels of SFAs, MUFAs, and PUFAs in 10 mL SBH-added cells were 24.67, 12.89, and 34.24%, respectively. Eventually, the fuel properties of Chlorococcum sp. biodiesel, satisfying international biodiesel standards, make the biodiesel a viable diesel substitute in the future.


Asunto(s)
Microalgas , Saccharum , Ácidos Grasos , Solventes , Lípidos , Biocombustibles , Carbono , Metanol , Biomasa
6.
Environ Res ; 245: 118025, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38151153

RESUMEN

The study investigates the potential of utilizing banana trunk-derived porous activated biochar enriched with SO3H- as a catalyst for eco-friendly biodiesel production from the microalga Chlorella vulgaris. An extensive analysis, employing advanced techniques such as XRD, FTIR, TGA, XPS, NH3-TPD, BET, SEM-EDX, and TEM, was conducted to elucidate the physicochemical properties of BT-SO3H catalysts. The synthesized catalyst demonstrated its efficiency in converting the total lipids of Chlorella vulgaris into biodiesel, with varying concentrations of 3%, 5%, and 7%. Notably, using a 5% BT-SO3H concentration resulted in remarkably higher biodiesel production about 58.29%. Additionally, the fatty acid profile of C. vulgaris biodiesel indicated that C16:0 was the predominant fatty acid at 24.31%, followed by C18:1 (19.68%), C18:3 (11.45%), and C16:1 (7.56%). Furthermore, the biodiesel produced via 5% BT-SO3H was estimated to have higher levels of saturated fatty acids (SFAs) at 34.28%, monounsaturated fatty acids (MUFAs) at 30.70%, and polyunsaturated fatty acids (PUFAs) at 24.24%. These findings highlight the promising potential of BT-SO3H catalysts for efficient and environmentally friendly biodiesel production from microalgal species.


Asunto(s)
Chlorella vulgaris , Microalgas , Biocombustibles , Biomasa , Ácidos Grasos/análisis
7.
Environ Res ; 218: 114978, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36495964

RESUMEN

Amongst the current alternatives, algae were proven to be a promising source of biofuel, which is renewable and capable of meeting world demand for transportation fuels. However, a suitable lipid extraction method that efficiently releases the lipids from different algal strains remains a bottleneck. The multifarious pretreatment methods are prevalent in this field of lipid extraction, and therefore, this article has critically reviewed the various lipid extraction methods for ameliorating the lipid yield from algae, irrespective of the strains/species. Physical, mechanical, and chemical are the different types of pretreatment methods. In this review, methodologies such as homogenization, sonication, Soxhlet extraction, microwave treatment, and bead-beating, have been studied in detail and are the most commonly used methods for lipid extraction. Specific advanced/emerging processes such as supercritical CO2 extraction, ionic liquid, and CO2 switchable solvent-based algal lipid extraction are yet to be demonstrated at pilot-scale, though promising. The extraction of lipids has to be financially conducive, environmentally sustainable, and industrially applicable for further conversion into biodiesel. Hence, this paper discusses variable pretreatment for lipid extraction and imparts a comparative analysis to elect an efficient, economically sound lipid extraction method for pilot-scale biodiesel production.


Asunto(s)
Líquidos Iónicos , Microalgas , Lípidos , Biocombustibles/análisis , Dióxido de Carbono/análisis , Biomasa
8.
Environ Res ; 231(Pt 2): 116095, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37182825

RESUMEN

In this study, a one-step hydrothermal approach was used to make pure magnetic copper ferrite (CuFe2O4) and copper ferrite-graphene oxide (CuFe2O4-rGO) nanocomposites (NCs) and spinel structure CuFe2O4 with a single phase of tetragonal CuFe2O4-rGO-NCs was confirmed by the XRD. Then, characterization of CuFe2O4-rGO-NCs was done using ng Raman spectroscopy, FT-IR, TGA-DTA, EDS, SEM, and TEM. The synthesized NCs was exposed to UV light to evaluate its photocatalytic activity for the degradation of methylene blue (MB) and rhodamine B (RhB) with CuFe2O4 and CuFe2O4-rGO-NCs, respectively. The catalyst CuFe2O4-rGO-NCs provided higher degradation of MB (94%) than for RhB (86%) under UV light irradiation compared to CuFe2O4. Further, the antibacterial activities of CuFe2O4-NPs and CuFe2O4-rGO-NCs were tested against Gram-negative and -positive bacterial pathogens such as Vibrio cholera (V. cholera); Escherichia coli (E. coli); Pseudomonas aeruginosa (P. aeruginosa); Bacillus subtilis (B. subtilis); Staphylococcus aureus (S. aureus); and Staphylococcus epidermidis (S. epidermidis) by well diffusion method. At 100 µg/mL concentrations of CuFe2O4-rGO-NCs, maximal growth inhibition was shown against E. coli (18 mm) and minimum growth inhibition against S. epidermidis (12 mm). This study suggests that CuFe2O4-rGO-NCs as a high-efficacy antibacterial material and plays an important role in exhibiting higher sensitivity depending on concentrations. The results encourage that the synthesized CuFe2O4-rGO-NCs can be used as a promising material for the antibacterial activity and also for dye degradation in the water/wastewater treatment plants.


Asunto(s)
Cobre , Nanocompuestos , Escherichia coli , Staphylococcus aureus , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Nanocompuestos/química
9.
J Environ Manage ; 345: 118837, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37634401

RESUMEN

Process Intensification (PI) is the modification or integration of conventional or novel processes within a single unit operation in order to improve product quality and reduce waste. PI offers numerous advantages, including a reduction in the initial and operational costs, an improvement in product quality/quantity, the generation of less waste, and an increase in process safety. The synergistic effect of PI in comparison to the conventional procedure ensures maximizing resource efficiency. PI can be accomplished in two ways: either by integrating various processes or by modifying the design of equipment to improve operational efficiency. In this regard, the present review provides a comprehensive insight into the application of PI in wastewater and sludge treatment methods and discusses the operational advantages. This review provides a comprehensive list of different PI approaches applied in wastewater and sludge treatment to remove pollutants and the various equipment, techniques and reactors used in PI. The second section addresses the challenges of PI in wastewater treatment that removes dyes, pesticides, organic and inorganic pollutants, micro- and nano-plastics, persistent organic pollutants, pharmaceutical and personal care pollutants.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Aguas Residuales , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis
10.
Ecotoxicol Environ Saf ; 208: 111567, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396096

RESUMEN

In this study, the production and compositional analysis of exopolysaccharides produced by Bacillus cereus KMS3-1 grown in metal amended conditions were investigated. In addition, the metal adsorption efficacy of exopolysaccharides (EPS) produced by KMS3-1 strain was evaluated in a batch mode. Increased production of exopolysaccharides by KMS3-1 strain was observed while growing under metal amended conditions (100 mg/L) and also, the yield was in the order of Pb(II)>Cu(II)>Cd(II)>Control. Characterization of EPS using FT-IR, XRD, and SEM analysis revealed that the EPS can interact with metal ions through their functional groups (O‒H, CH, CË­O, C‒O, and C‒CË­O) and assist the detoxification process. Further, equilibrium results were fitted with the Langmuir model and notably, the maximum adsorption capacity (Qmax) of EPS for Cd(II), Cu(II), and Pb(II) found to be 54.05, 71.42, and 78.74 mg/g, respectively. To the best of our knowledge, EPS demonstrating proficient metal adsorption was substantiated by XRD analysis in this study. Owing to good adsorbing nature, the exopolysaccharides could be used as chelating substances for wastewater treatment.


Asunto(s)
Metales Pesados/toxicidad , Polisacáridos Bacterianos , Adsorción , Bacterias , Quelantes , Polisacáridos , Espectroscopía Infrarroja por Transformada de Fourier
11.
Appl Microbiol Biotechnol ; 103(12): 4709-4721, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31030286

RESUMEN

Cyanobacteria are potential organisms, which are used as food, feed and fuel. The unique characters of cyanobacteria include short generation times, their ubiquitous presence and efficient nitrogen fixing potential. Cyanobacteria are unique organisms performing photosynthesis, bioremediation of wastewater, high biomass and biofuel productions etc. They are also used in the treatment of industrial and domestic wastewaters for the utilization or removal of ammonia, phosphates and other heavy metals (Cr, Pb, Co, Cu, Zn). Biomasses of cyanobacteria are used as biofertilizers for the improvement of nutrient or mineral status and water-holding capacity of the soil. The secondary metabolites of cyanobacteria are used in pharmaceuticals, nutraceutical and chemical industries. In the industrial sector, value-added products from cyanobacteria such as pigments, enzymes and exopolysaccharides are being produced in large scales for biomedical and health applications. Age-old applications of cyanobacteria in agroecosystems as biofertilizers (Anabaena sp; Nostoc sp.) and in industrial sectors as food products (Spirulina) have motivated the researchers to come up with much more specific applications of cyanobacteria both in agricultural and in industrial sectors. Therefore, considering the effectiveness and efficiency of cyanobacteria, the present review has enlisted the standout qualities of cyanobacteria and their potential applications in agricultural and industrial sectors for the benefit of human beings and environment.


Asunto(s)
Agricultura , Cianobacterias/metabolismo , Microbiología Industrial , Metabolismo Secundario , Biodegradación Ambiental , Biocombustibles , Biomasa , Enzimas/biosíntesis , Fertilizantes , Nitrógeno/metabolismo , Fosfatos/metabolismo , Pigmentos Biológicos , Polisacáridos Bacterianos/biosíntesis , Aguas Residuales
12.
J Environ Manage ; 218: 165-180, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29679823

RESUMEN

The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed.


Asunto(s)
Residuos Industriales , Eliminación de Residuos Líquidos , Industrias , Aguas Residuales , Contaminantes Químicos del Agua
13.
Chemosphere ; 332: 138812, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37127197

RESUMEN

Presence of emerging pollutants (EPs), aka Micropollutants (MPs) in the freshwater environments is a severe threat to the environment and human beings. They include pharmaceuticals, insecticides, industrial chemicals, natural hormones, and personal care items and the pollutants are mostly present in wastewater generated from urbanization and increased industrial growth. Even concentrations as low as ngL-1 or mgL-1 have proven ecologically lethal to aquatic biota. For several years, the biodegradation of various Micropollutants (MPs) in aquatic ecosystems has been a significant area of research worldwide, with many chemical compounds being discovered in various water bodies. As aquatic biota spends most of their formative phases in polluted water, the impacts on aquatic biota are obvious, indicating that the environmental danger is substantial. In contrast, the impact of these contaminants on aquatic creatures and freshwater consumption is more subtle and manifests directly when disrupting the endocrine system. Research and development activities are expected to enable the development of ecologically sustainable, cost-effective, and efficient treatments for practical systems in the near future. Therefore, this review aims to understand recent emerging pollutants discovered and the available treatment technologies and suggest an innovative and cost-effective method to treat these EPs, which is sustainable and follows the circular bioeconomy.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Humanos , Ecosistema , Contaminantes Químicos del Agua/análisis , Hormonas , Agua , Monitoreo del Ambiente
14.
Chemosphere ; 345: 140464, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852378

RESUMEN

The objective of the present study is to synthesize g-C3N4-Ni nanocomposites composed of graphitic carbon nitride and magnetic nickel nanoparticles for benzopyrene degradation, which is one of the most potent polycyclic aromatic hydrocarbons (PAH) molecules. The concocted g-C3N4-Ni nanocomposites contained confined nanospheres with a mean particle dimension of 22 nm. Batch adsorption studies revealed that a rise in adsorbent dosage elevates benzopyrene degradation percentage in both water and soil samples with respect to time. The increase in the benzopyrene concentration did not have much influence on the degradation efficiency, and hence, the minimal concentration of PAH molecule is essential for the effective adsorption by g-C3N4-Ni nanocomposites. The rise in pH tends to increase the degradation of Benzopyrene till 3 h of the incubation period, and beyond 3 h, the degradation percentage declines. With regard to the effect of light source, UV light has been shown to accelerate the degradation of benzopyrene by g-C3N4-Ni nanocomposites than sunlight. The adsorption kinetic and isotherm investigations have proven that the Pseudo-second order kinetic model and Freundlich isotherm model were appropriate for our study. Thus, the g-C3N4-Ni nanocomposites were found to be efficient as a photocatalyst for the adsorption of benzopyrene from environmental samples.


Asunto(s)
Nanocompuestos , Hidrocarburos Policíclicos Aromáticos , Níquel/química , Nanocompuestos/química , Agua/química , Benzopirenos , Catálisis
15.
Sci Rep ; 12(1): 6046, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35411062

RESUMEN

The staggering rate of population growth has augmented the reliance on fossil fuel utilization, and it kindled the society to explore alternative and sustainable sources of energy. In this regard, biodiesel from microalgae came to the limelight; but crucial energy-consuming and expensive processes like cultivation, harvesting, and drying make the microalgal biodiesel unsustainable and economically unfeasible. To surpass these impediments, in this research work, a low-cost box-type passive solar dryer (BTPSD) is designed and fabricated with zero energy consumption mode and compared with conventional hot air oven for drying the biomass, neutral lipids of the marine microalga Chlorella vulgaris for biodiesel application. The onset of the work, BTPSD with 2 cm thickness of glass wool as TIM (thermal insulation material), 4 cm TIM thickness and no TIM was simulated for thermal storage behaviour using ANSYS FLUENT 19.2 Computational Fluid Dynamics tool and based on the results, 4 cm TIM thickness was chosen for experimentation. The time taken by BTPSD and hot air oven to remove the moisture from algal biomass is 3 and 2 h, respectively, whereas for neutral lipids drying, it was 4 and 3.5 h, respectively. Though there is a little difference in drying time, neutral lipid and FAME content from both drying systems are tantamount, i.e., ~ 12% neutral lipid and 95% FAME. Further, the percentage of vital fatty acids identified from BTPSD and hot air oven methods are almost similar, i.e., C16:0 (23.4%), C18:1 (14.3%), C18:3 (11.42%), C18:1 (9.22%). Though the time taken for valorizing biomass and neutral lipids of C. vulgaris by BTPSD is slightly longer than hot air oven, low energy consumption and cost-effectiveness make the BTPSD a promising system to scale down the microalgal biodiesel production cost significantly.


Asunto(s)
Chlorella vulgaris , Microalgas , Biocombustibles , Biomasa , Lípidos
16.
Chemosphere ; 288(Pt 2): 132442, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34606898

RESUMEN

Considering the momentous cost drivers in energy efficient algal biorefinery processes, a green alternative in extracting lipid from microalgae is anticipated. Switchable solvent system using tertiary amines namely DMBA (Dimethylbenzylamine), DMCHA (Dimethylcyclohexylamine), and DIPEA (Diisopropylethylamine) for lipid extraction from wet hypersaline microalgae was investigated in this study. Interestingly, present study showed that at 1:1 (v/v of fresh DMBA solvent: microalgal biomass), and for 1 h extraction time, the lipid yield was 41.9, 26.6, and 33.3% for Chlorella sp. NITT 05, Chlorella sp. NITT 02, and Picochlorum sp. NITT 04, respectively and for recovered DMBA solvent, at 1:1 (v/v) and for 1 h extraction time, the lipid yield was 40.8, 25.97, and 32%, respectively. Similarly, lipid extraction using DMCHA solvent for Chlorella sp. NITT 05, Chlorella sp. NITT 02, and Picochlorum sp. NITT 04 at 1:1 (v/v of solvent: microalgal biomass) and 1 h extraction time showed 34.28, 24.24 and 23.33% lipids, respectively for fresh solvent and 34.01, 24.24 and 23.18% for recovered solvent respectively; while DIPEA was not competent in lipid extraction from three tested microalgae. FAME profile revealed the presence of saturated fatty acids as 43.04%, 40.98%, 38.45% and monounsaturated fatty acids as 28.38%, 27.05%, 23.3% for Chlorella sp. NITT05, Picochlorum sp. NITT04, Chlorella sp. NITT02, respectively. This study attributes Chlorella sp. NITT05 and Picochlorum sp. NITT04 to be ideal algal species for biodiesel production.


Asunto(s)
Chlorella , Microalgas , Dióxido de Carbono , Ácidos Grasos , Solventes
17.
Sci Total Environ ; 808: 151969, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34843758

RESUMEN

Different CO2 concentration such as 0.03, 5, 10 and 15% and low-cost urea repletion/starvation in Chlorella vulgaris on growth, total and non-polar lipid content and fatty acid composition was studied. Chlorella vulgaris grown at 0.03% CO2 apparently revealed inferior biomass yield 0.55 g/L on 14th day compared to CO2 supplemented cells. In the case of CO2 supply, 15% CO2 has unveiled higher biomass yield at about 1.83 g/L on day 12 whereas biomass yield for 5 and 10% CO2 supplemented cells was 1.61 and 1.73 g/L, respectively on 12th day of cultivation. The biomass productivity (g) per liter per day was 32 mg in control condition whereas it was 125, 134 and 144 mg/L/d in 5, 10 and 15% CO2 supplied cells, respectively. Lipid content of the strain grown at control, 5, 10 and 15% CO2 was 21.2, 22.1, 23.4 and 24.6%, respectively and however, without CO2 addition in low-cost urea repleted and urea depleted medium grown cells revealed 21.2 and 24.2%, respectively. Interestingly, strain grown at 15% CO2 supply in urea deplete medium yielded 28.7% lipid and contribution of non-polar lipids in total lipids is 69.7%. Further, the fatty acid composition of the strain grown in 15% CO2 supply in urea depleted medium showed C16:0, C16:1, C18:1 and C18:3 in the level of 30.12, 9.98, 23.43, and 11.97%, respectively compared to control and urea amended condition.


Asunto(s)
Chlorella vulgaris , Microalgas , Benchmarking , Biocombustibles , Biomasa , Dióxido de Carbono , Ácidos Grasos , Lípidos , Urea
18.
Sci Total Environ ; 813: 152418, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34923011

RESUMEN

The need for an alternative fuel has been growing swiftly owing to the extravagant use of fossil fuels as a sole energy source for all purposes. This paper investigates the performance, emission and noise characteristics of cellulosic biofuel. A series of tests were conducted in a single cylinder, four stroke DI engine to determine the performance measuring factors such as brake thermal efficiency (BTE), brake power (BP), brake specific fuel consumption (BSFC) and emission factors such as CO emission, NO emission, CO2 emission and smoke and then, the HC emission rates were also measured. All tests were carried out at different load conditions of 25%, 50%, 75% and 100% with the constant speed of 1500 rpm. The fuel blends taken for the tests were diesel, E5, E10, E15 and E20. The E20 comparatively showed lower performance than all other fuel blends. However, when considering CO and smoke emission, the E20 fuel blends produced better reduced emission. The lower-level ethanol diesel blend showed better BT as well as BTE and BSFC. From the above findings, it is clear and evident that cellulosic biodiesel blends can be an optimal solution to meet the ongoing energy demands.


Asunto(s)
Biocombustibles , Gasolina , Monóxido de Carbono/análisis , Etanol , Emisiones de Vehículos
19.
Sci Total Environ ; 766: 144608, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33421791

RESUMEN

Thermochemical techniques are being operated for the complete conversion of diverse biomasses to biofuels. Among the feedstocks used for thermochemical processes, algae are the promising biomass sources owing to their advantages over other feedstocks such as biomass productivity, renewability and sustainability. Due to several advantages, algal biomass is considered as a source for third generation biofuel. This review work aims to provide a state-of-the-art on the most commonly used thermochemical methods namely torrefaction, pyrolysis, and gasification processes. Furthermore, the production of biofuels from algal biomass was comprehensively articulated. Different algal strains used in thermochemical techniques and their conditions of operation were compared and discussed. The yield and quality of solid (char), liquid (bio-oil) and gaseous (syngas) products obtained through thermochemical methods were reviewed and analysed to understand the efficacy of each technique. End product percentage, quality and advantages of the torrefaction, pyrolysis, and gasification were summarized. It is found that the biofuel produced from the torrefaction process was easy to store and deliver and had higher utilization efficiency. Among the existing thermochemical methods, the pyrolysis process was widely used for the complete conversion of algal biomass to bio-oil or char. This study also revealed that the gasification (supercritical) method was the most energy efficient process for conversion of wet algal biomass. The reactor used in the thermochemical process and its subprocess was also highlighted. This study revealed that the fixed bed reactor was suitable for small scale production whereas the fluidized bed reactor could be scaled up for industrial production. In addition to that environmental impacts of the products were also spotlighted. Finally, the perspectives and challenges of algal biomass to bioenergy conversion were addressed.


Asunto(s)
Biocombustibles , Gases , Biomasa
20.
Sci Total Environ ; 766: 144213, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33418252

RESUMEN

Algae are one of the most viable feedstock options that can be converted into different bioenergies viz., bioethanol, biobutanol, biodiesel, biomethane, biohydrogen, etc. owing to their renewable, sustainable and economic credibility features. Algal biomass to fuel biorefining process is generally classified into three categories as chemical, biochemical and thermochemical methods. The present article aims to provide a state-of-the-art review on the factors affecting the thermochemical conversion process of algal biomass to bioenergy. Further, reaction conditions of each techniques (torrefaction, pyrolysis, gasification and hydrothermal process) influence biochar, bio-oil and syngas yield were discussed. Reaction parameters or factors such as reactor temperature, residence time, pressure, biomass load/feedstock composition, catalyst addition and carrier gas flow affecting process efficiency in terms of product yield and quality were spotlighted and extensively discussed with copious literature. It also presents the novel insights on production of solid (char), liquid (bio-oil) and gaseous (syngas) biofuel through torrefaction, pyrolysis and gasification, respectively. It is found that the energy intensive drying was more efficient mode involved in thermochemical process for wet algal biomass. However other modes of thermochemical process were having unique feature on improving the product yield and quality. Among the various factors, reaction temperature and residence time were relatively more important factors which affected the process efficiency. The other factors signposted in this review will lay a roadmap to researchers to choose an optimal thermochemical conditions for high quality end product. Lastly, the perspectives and challenges in thermochemical conversion algae biomass to biofuels were also discussed.


Asunto(s)
Biocombustibles , Gases , Biomasa , Plantas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA