Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36850845

RESUMEN

Machine protection systems in high power particle accelerators are crucial. They can detect, prevent, and respond to events which would otherwise cause damage and significant downtime to accelerator infrastructure. Current systems are often resource heavy and operationally expensive, reacting after an event has begun to cause damage; this leads to facilities only covering certain operational modes and setting lower limits on machine performance. Presented here is a new type of machine protection system based upon optical fibres, which would be complementary to existing systems, elevating existing performance. These fibres are laid along an accelerator beam line in lengths of ∼100 m, providing continuous coverage over this distance. When relativistic particles pass through these fibres, they generate Cherenkov radiation in the optical spectrum. This radiation propagates in both directions along the fibre and can be detected at both ends. A calibration based technique allows the location of the Cherenkov radiation source to be pinpointed to within 0.5 m with a resolution of 1 m. This measurement mechanism, from a single device, has multiple applications within an accelerator facility. These include beam loss location monitoring, RF breakdown prediction, and quench prevention. Detailed here are the application processes and results from measurements, which provide proof of concept for this device for both beam loss monitoring and RF breakdown detection. Furthermore, highlighted are the current challenges for future innovation.

2.
J Radiat Res ; 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37154587

RESUMEN

The pBR322 plasmid DNA was irradiated with 35 MeV electrons, 228 MeV protons and 300 kVp X-rays to quantify DNA damage and make comparisons of DNA damage between radiation modalities. Plasmid was irradiated in a medium containing hydroxyl radical scavengers in varying concentrations. This altered the amount of indirect hydroxyl-mediated DNA damage, to create an environment that is more closely associated with a biological cell. We show that increasing hydroxyl scavenger concentration significantly reduced post-irradiation DNA damage to pBR322 plasmid DNA consistently and equally with three radiation modalities. At low scavenging capacities, irradiation with both 35 MeV electrons and 228 MeV protons resulted in increased DNA damage per dose compared with 300 kVp X-rays. We quantify both single-strand break (SSB) and double-strand break (DSB) induction between the modalities as a ratio of yields relative to X-rays, referred to as relative biological effectiveness (RBE). RBESSB values of 1.16 ± 0.15 and 1.18 ± 0.08 were calculated for protons and electrons, respectively, in a low hydroxyl scavenging environment containing 1 mM Tris-HCl for SSB induction. In higher hydroxyl scavenging capacity environments (above 1.1 × 106 s-1), no significant differences in DNA damage induction were found between radiation modalities when using SSB induction as a measure of RBE. Considering DSB induction, significant differences were only found between X-rays and 35 MeV electrons, with an RBEDSB of 1.72 ± 0.91 for 35 MeV electrons, indicating that electrons result in significantly more SSBs and DSBs per unit of dose than 300 kVp X-rays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA