Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant Dis ; 107(12): 3952-3957, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37415351

RESUMEN

Barley leaf rust, caused by Puccinia hordei, is an important disease of barley worldwide. The pathogen can develop new races that overcome resistance genes, emphasizing the need for monitoring its virulence. This study characterized 519 P. hordei isolates collected in the United States from the 1989 to 2000 and 2010 to 2020 survey periods on 15 Rph (Reaction to Puccinia hordei) genes. We analyzed linearized infection type data to detect virulence patterns across the United States and in five geographical regions: Pacific/West (PW), Southwest (SW), Midwest (MW), Northeast (NE), and Southeast (SE). Over 32 years, we observed high mean infection scores for Rph1.a, Rph4.d, and Rph8.h; intermediate scores for Rph2.b, Rph9.i, Rph10.o, Rph11.p, and Rph13.x; and low scores for Rph3.c, Rph5.e, Rph5.f, Rph7.g, Rph9.z, Rph14.ab, and Rph15.ad. Virulence for Rph2.b, Rph3.c, Rph5.e, Rph9.z, Rph10.o, Rph11.p, and Rph13.x significantly differed between the two survey periods. From 1989 to 2020, regional patterns of virulence were found for Rph5.e, Rph5.f, Rph7.g, and Rph14.ab, while regionalities of virulence for Rph3.c, Rph9.i, Rph9.z were only observed in the 2010 to 2020 survey period. Virulence associations were also detected in the P. hordei population. Notably, isolates that were virulent to Rph5.e and Rph6.f were more likely to be avirulent to Rph7.g and Rph13.x, and vice versa. In decreasing order of effectiveness, Rph15.ad, Rph5.e, Rph3.c, Rph9.z, Rph7.g, Rph5.f, and Rph14.ab were the most effective Rph genes in the United States from 1989 to 2020. Pyramiding Rph15.ad with other widely effective Rph and adult plant resistance genes may provide long-lasting resistance against P. hordei.


Asunto(s)
Basidiomycota , Hordeum , Estados Unidos , Mapeo Cromosómico , Hordeum/genética , Resistencia a la Enfermedad/genética , Virulencia , Basidiomycota/genética , Enfermedades de las Plantas/genética
2.
Plant Biotechnol J ; 19(6): 1206-1215, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33415836

RESUMEN

Leaf rust, caused by Puccinia hordei, is a devastating fungal disease affecting barley (Hordeum vulgare subsp. vulgare) production globally. Despite the effectiveness of genetic resistance, the deployment of single genes often compromises durability due to the emergence of virulent P. hordei races, prompting the search for new sources of resistance. Here we report on the cloning of Rph15, a resistance gene derived from barley's wild progenitor H. vulgare subsp. spontaneum. We demonstrate using introgression mapping, mutation and complementation that the Rph15 gene from the near-isogenic line (NIL) Bowman + Rph15 (referred to as BW719) encodes a coiled-coil nucleotide-binding leucine-rich repeat (NLR) protein with an integrated Zinc finger BED (ZF-BED) domain. A predicted KASP marker was developed and validated across a collection of Australian cultivars and a series of introgression lines in the Bowman background known to carry the Rph15 resistance. Rph16 from HS-680, another wild barley derived leaf rust resistance gene, was previously mapped to the same genomic region on chromosome 2H and was assumed to be allelic with Rph15 based on genetic studies. Both sequence analysis, race specificity and the identification of a knockout mutant in the HS-680 background suggest that Rph15- and Rph16-mediated resistances are in fact the same and not allelic as previously thought. The cloning of Rph15 now permits efficient gene deployment and the production of resistance gene cassettes for sustained leaf rust control.


Asunto(s)
Basidiomycota , Hordeum , Australia , Basidiomycota/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Hordeum/genética , Enfermedades de las Plantas/genética
3.
Plant Biotechnol J ; 19(2): 273-284, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32744350

RESUMEN

In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad/genética , Hordeum , Enfermedades de las Plantas/genética , Hordeum/genética , Enfermedades de las Plantas/microbiología
4.
Phytopathology ; 111(3): 548-558, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32880513

RESUMEN

Wheat stem rust (causal organism: Puccinia graminis f. sp. tritici) is an important fungal disease that causes significant yield losses in barley. The deployment of resistant cultivars is the most effective means of controlling this disease. Stem rust evaluations of a diverse collection of wild barley (Hordeum vulgare ssp. spontaneum) identified two Jordanian accessions (WBDC094 and WBDC238) with resistance to a virulent pathotype (P. graminis f. sp. tritici HKHJC) from the United States. To elucidate the genetics of stem rust resistance, both accessions were crossed to the susceptible landrace Hiproly. Segregation ratios of F2 and F3 progeny indicated that a single dominant gene confers resistance to P. graminis f. sp. tritici HKHJC. Molecular mapping of the resistance locus was performed in the Hiproly/WBDC238 F2 population based on 3,329 single-nucleotide polymorphism markers generated by genotyping-by-sequencing. Quantitative trait locus analysis positioned the resistance gene to the long arm of chromosome 3H between the physical/genetic positions of 683.8 Mbp/172.9 cM and 693.7 Mbp/176.0 cM. Because this resistance gene is novel, it was assigned the new gene locus symbol of Rpg7 with a corresponding allele symbol of Rpg7.i. At the seedling stage, Rpg7 confers resistance against a number of other important P. graminis f. sp. tritici pathotypes from the United States (MCCFC, QCCJB, and TTTTF) and Africa (TTKSK) as well as an isolate (92-MN-90) of the rye stem rust pathogen (P. graminis f. sp. secalis) from Minnesota. The resistance conferred by Rpg7 can be readily transferred into breeding programs because of its simple inheritance and clear phenotypic expression.


Asunto(s)
Basidiomycota , Hordeum , África , Resistencia a la Enfermedad/genética , Hordeum/genética , Humanos , Minnesota , Fitomejoramiento , Enfermedades de las Plantas
5.
Int J Mol Sci ; 19(12)2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-30563213

RESUMEN

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major biotic constraint to wheat production worldwide. Disease resistant cultivars are a sustainable means for the efficient control of this disease. To identify quantitative trait loci (QTLs) conferring resistance to stem rust at the seedling stage, an association mapping panel consisting of 230 tetraploid wheat accessions were evaluated for reaction to five Pgt races under greenhouse conditions. A high level of phenotypic variation was observed in the panel in response to all of the races, allowing for genome-wide association mapping of resistance QTLs in wild, landrace, and cultivated tetraploid wheats. Twenty-two resistance QTLs were identified, which were characterized by at least two marker-trait associations. Most of the identified resistance loci were coincident with previously identified rust resistance genes/QTLs; however, six regions detected on chromosomes 1B, 5A, 5B, 6B, and 7B may be novel. Availability of the reference genome sequence of wild emmer wheat accession Zavitan facilitated the search for candidate resistance genes in the regions where QTLs were identified, and many of them were annotated as NOD (nucleotide binding oligomerization domain)-like receptor (NLR) genes or genes related to broad spectrum resistance.


Asunto(s)
Mapeo Cromosómico/métodos , Resistencia a la Enfermedad , Sitios de Carácter Cuantitativo , Triticum/genética , Basidiomycota/patogenicidad , Cromosomas de las Plantas/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Tetraploidía , Triticum/microbiología
6.
Plant Genome ; : e20413, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087443

RESUMEN

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major wheat disease worldwide. A collection of 283 wild emmer wheat [Triticum turgidum L. subsp. dicoccoides (Körn. ex Asch. & Graebn.) Thell] accessions, representative of the entire Fertile Crescent region where wild emmer naturally occurs, was assembled, genotyped, and characterized for population structure, genetic diversity, and rate of linkage disequilibrium (LD) decay. Then, the collection was employed for mapping Pgt resistance genes, as a proof of concept of the effectiveness of genome-wide association studies in wild emmer. The collection was evaluated in controlled conditions for reaction to six common Pgt pathotypes (TPMKC, TTTTF, JRCQC, TRTTF, TTKSK/Ug99, and TKTTF). Most resistant accessions originated from the Southern Levant wild emmer lineage, with some showing a resistance reaction toward three to six tested races. Association analysis was conducted considering a 12K polymorphic single-nucleotide polymorphisms dataset, kinship relatedness between accessions, and population structure. Eleven significant marker-trait associations (MTA) were identified across the genome, which explained from 17% to up to 49% of phenotypic variance with an average 1.5 additive effect (based on the 1-9 scoring scale). The identified loci were either effective against single or multiple races. Some MTAs colocalized with known Pgt resistance genes, while others represent novel resistance loci useful for durum and bread wheat prebreeding. Candidate genes with an annotated function related to plant response to pathogens were identified at the regions linked to the resistance and defined according to the estimated small LD (about 126 kb), as typical of wild species.

7.
Front Plant Sci ; 14: 1290643, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235202

RESUMEN

Rusts of the genus Puccinia are wheat pathogens. Stem (black; Sr), leaf (brown; Lr), and stripe (yellow; Yr) rust, caused by Puccinia graminis f. sp. tritici (Pgt), Puccinia triticina (Pt), and Puccinia striiformis f. sp. tritici (Pst), can occur singularly or in mixed infections and pose a threat to wheat production globally in terms of the wide dispersal of their urediniospores. The development of durable resistant cultivars is the most sustainable method for controlling them. Many resistance genes have been identified, characterized, genetically mapped, and cloned; several quantitative trait loci (QTLs) for resistance have also been described. However, few studies have considered resistance to all three rust pathogens in a given germplasm. A genome-wide association study (GWAS) was carried out to identify loci associated with resistance to the three rusts in a collection of 230 inbred lines of tetraploid wheat (128 of which were Triticum turgidum ssp. durum) genotyped with SNPs. The wheat panel was phenotyped in the field and subjected to growth chamber experiments across different countries (USA, Mexico, Morocco, Italy, and Spain); then, a mixed linear model (MLM) GWAS was performed. In total, 9, 34, and 5 QTLs were identified in the A and B genomes for resistance to Pgt, Pt, and Pst, respectively, at both the seedling and adult plant stages. Only one QTL on chromosome 4A was found to be effective against all three rusts at the seedling stage. Six QTLs conferring resistance to two rust species at the adult plant stage were mapped: three on chromosome 1B and one each on 5B, 7A, and 7B. Fifteen QTLs conferring seedling resistance to two rusts were mapped: five on chromosome 2B, three on 7B, two each on 5B and 6A, and one each on 1B, 2A, and 7A. Most of the QTLs identified were specific for a single rust species or race of a species. Candidate genes were identified within the confidence intervals of a QTL conferring resistance against at least two rust species by using the annotations of the durum (cv. 'Svevo') and wild emmer wheat ('Zavitan') reference genomes. The 22 identified loci conferring resistance to two or three rust species may be useful for breeding new and potentially durable resistant wheat cultivars.

8.
Nat Genet ; 55(6): 921-926, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37217714

RESUMEN

To safeguard bread wheat against pests and diseases, breeders have introduced over 200 resistance genes into its genome, thus nearly doubling the number of designated resistance genes in the wheat gene pool1. Isolating these genes facilitates their fast-tracking in breeding programs and incorporation into polygene stacks for more durable resistance. We cloned the stem rust resistance gene Sr43, which was crossed into bread wheat from the wild grass Thinopyrum elongatum2,3. Sr43 encodes an active protein kinase fused to two domains of unknown function. The gene, which is unique to the Triticeae, appears to have arisen through a gene fusion event 6.7 to 11.6 million years ago. Transgenic expression of Sr43 in wheat conferred high levels of resistance to a wide range of isolates of the pathogen causing stem rust, highlighting the potential value of Sr43 in resistance breeding and engineering.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Fitomejoramiento , Genes de Plantas , Basidiomycota/genética
9.
Genes (Basel) ; 13(10)2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36292678

RESUMEN

Stem rinfectionust, caused by the fungus Puccinia graminis f. sp. tritici (Pgt), is one of the most devastating fungal diseases of durum and common wheat worldwide. The identification of sources of resistance and the validation of QTLs identified through genome-wide association studies is of paramount importance for reducing the losses caused by this disease to wheat grain yield and quality. Four segregating populations whose parents showed contrasting reactions to some Pgt races were assessed in the present study, and 14 QTLs were identified on chromosomes 3A, 4A, 6A, and 6B, with some regions in common between different segregating populations. Several QTLs were mapped to chromosomal regions coincident with previously mapped stem rust resistance loci; however, their reaction to different Pgt races suggest that novel genes or alleles could be present on chromosomes 3A and 6B. Putative candidate genes with a disease-related functional annotation have been identified in the QTL regions based on information available from the reference genome of durum cv. 'Svevo'.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Cromosomas de las Plantas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Basidiomycota/genética
10.
Nat Commun ; 13(1): 1607, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338132

RESUMEN

The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance.


Asunto(s)
Aegilops , Basidiomycota , Aegilops/genética , Basidiomycota/genética , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Triticum/genética
11.
Nat Biotechnol ; 40(3): 422-431, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34725503

RESUMEN

Aegilops tauschii, the diploid wild progenitor of the D subgenome of bread wheat, is a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Here we sequenced 242 Ae. tauschii accessions and compared them to the wheat D subgenome to characterize genomic diversity. We found that a rare lineage of Ae. tauschii geographically restricted to present-day Georgia contributed to the wheat D subgenome in the independent hybridizations that gave rise to modern bread wheat. Through k-mer-based association mapping, we identified discrete genomic regions with candidate genes for disease and pest resistance and demonstrated their functional transfer into wheat by transgenesis and wide crossing, including the generation of a library of hexaploids incorporating diverse Ae. tauschii genomes. Exploiting the genomic diversity of the Ae. tauschii ancestral diploid genome permits rapid trait discovery and functional genetic validation in a hexaploid background amenable to breeding.


Asunto(s)
Aegilops , Aegilops/genética , Pan , Genómica , Metagenómica , Fitomejoramiento , Triticum/genética
12.
Nat Biotechnol ; 39(5): 561-566, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33398152

RESUMEN

Breeding wheat with durable resistance to the fungal pathogen Puccinia graminis f. sp. tritici (Pgt), a major threat to cereal production, is challenging due to the rapid evolution of pathogen virulence. Increased durability and broad-spectrum resistance can be achieved by introducing more than one resistance gene, but combining numerous unlinked genes by breeding is laborious. Here we generate polygenic Pgt resistance by introducing a transgene cassette of five resistance genes into bread wheat as a single locus and show that at least four of the five genes are functional. These wheat lines are resistant to aggressive and highly virulent Pgt isolates from around the world and show very high levels of resistance in the field. The simple monogenic inheritance of this multigene locus greatly simplifies its use in breeding. However, a new Pgt isolate with virulence to several genes at this locus suggests gene stacks will need strategic deployment to maintain their effectiveness.


Asunto(s)
Basidiomycota/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Triticum/genética , Basidiomycota/patogenicidad , Mapeo Cromosómico , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Transgenes/genética , Triticum/microbiología , Virulencia/genética
13.
Nat Commun ; 10(1): 5068, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31699975

RESUMEN

Parasexuality contributes to diversity and adaptive evolution of haploid (monokaryotic) fungi. However, non-sexual genetic exchange mechanisms are not defined in dikaryotic fungi (containing two distinct haploid nuclei). Newly emerged strains of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), such as Ug99, are a major threat to global food security. Here, we provide genomics-based evidence supporting that Ug99 arose by somatic hybridisation and nuclear exchange between dikaryons. Fully haplotype-resolved genome assembly and DNA proximity analysis reveal that Ug99 shares one haploid nucleus genotype with a much older African lineage of Pgt, with no recombination or chromosome reassortment. These findings indicate that nuclear exchange between dikaryotes can generate genetic diversity and facilitate the emergence of new lineages in asexual fungal populations.


Asunto(s)
Basidiomycota/genética , Genoma Fúngico/genética , Basidiomycota/fisiología , Evolución Molecular , Variación Genética , Haplotipos , Reproducción , Homología de Secuencia de Ácido Nucleico , Triticum/microbiología
14.
Nat Biotechnol ; 37(2): 139-143, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30718880

RESUMEN

Disease resistance (R) genes from wild relatives could be used to engineer broad-spectrum resistance in domesticated crops. We combined association genetics with R gene enrichment sequencing (AgRenSeq) to exploit pan-genome variation in wild diploid wheat and rapidly clone four stem rust resistance genes. AgRenSeq enables R gene cloning in any crop that has a diverse germplasm panel.


Asunto(s)
Clonación Molecular , Productos Agrícolas/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Mapeo Cromosómico , Estudios de Asociación Genética , Variación Genética , Genómica , Genotipo , Modelos Genéticos , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Plantones , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA