Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 36(17): 4592-4599, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32320252

RESUMEN

Dyeing of anodic porous alumina (APA) prepared by aluminum anodization is generally achieved by dipping the positively charged APA surface into a negatively charged dye solution. We have proposed a new method to adsorb dyes and molecules onto APA using negatively charged sodium dodecyl sulfate (SDS). In this study, we found that cationic methylene blue (MB) can be adsorbed onto the positively charged APA surface using SDS aqueous solutions. We investigated two adsorption methods: dipping APA into aqueous solutions containing both MB and SDS (method 1) and successive dipping of APA into SDS and then MB aqueous solutions (method 2). The two methods produced different adsorption characteristics. Method 1 adsorption profile reflected formation of dye-rich induced micelles below the critical micellar concentration (CMC) and electrostatic interaction of micelles with MB above CMC. Method 2 adsorption was explained by electrostatic interaction of preadsorbed SDS with APA and MB.

2.
J Vac Sci Technol A ; 31(1): 011504, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24932063

RESUMEN

The photoluminescence (PL) of conducting polymer polythiophene (PT) films incorporated with metallophthalocyanines (PcMs) such as CuPc, MgPc, FePc, Li2Pc, and CoPc was studied by PL and time-correlated single photon counting (TCSPC) measurements. Polymer films were prepared by electrochemical polymerization and PcMs migrated into the polymer films by a diffusion method using acetonitrile or toluene as a solvent to dissolve the PcMs. The wavelength of PL emission peaks changed significantly depending on the solvent used in the doping process. Using acetonitrile, the observed PL emission peaks originated from the Q band, whereas they were assigned to the Soret band in the case of toluene. TCSPC measurements showed that PL emission took place through a ligand-ligand transition process when using acetonitrile because the average lifetimes were comparable and independent of the central metal ions for CoPc-, Li2Pc-, and MgPc-doped polymer films. Conversely, using toluene, it was found that ligand-ligand emission occurred for Li2Pc-, MgPc-, and FePc-doped films. To identify the cause of the drastic change in PL emission pattern, x-ray photoelectron spectroscopy measurements were obtained. A lower binding energy component appeared in the C 1s core-level spectra of acetonitrile-processed PcM-doped PT films, whereas this component shifted to higher energy and overlapped with the main peak for toluene-processed PcM-doped PT films. The lower binding energy component corresponded to photoelectrons due to the C atoms in the benzene rings of the ligand. Lower binding energy components also appeared in the N 1s core-level spectra of acetonitrile-processed PcM-doped PT films, and this component shifted to higher energy for toluene-processed PcM-doped PT films. These lower energy components were assigned to the core-level peaks due to the N atoms at the meso position bridging between pyrrole rings. This suggests that the electron charge at the N sites of the meso positions in toluene-processed films was smaller than in acetonitrile-processed ones. The changes in energy at benzene C sites and meso N sites suggest that the electronic states of the phthalocyanine in the toluene-processed films were porphyrin-like, so the Soret band became dominant in the PL emission spectrum.

3.
Materials (Basel) ; 9(9)2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28773840

RESUMEN

The formation and entrapment of tris(8-hydroxyquinoline)aluminum (Alq3) molecules on the surface of anodic porous alumina (APA) immersed in an ethanol solution of 8-hydroxyquinoline (HQ) were investigated by absorption, fluorescence, and Raman spectroscopies. The effects of the selected APA preparation conditions (galvanostatic or potentiostatic anodization method, anodizing current and voltage values, one- or two-step anodizing process, and sulfuric acid electrolyte concentration) on the adsorption and desorption of Alq3 species were examined. Among the listed parameters, sulfuric acid concentration was the most important factor in determining the Alq3 adsorption characteristics. The Alq3 content measured after desorption under galvanostatic conditions was 2.5 times larger than that obtained under potentiostatic ones, regardless of the adsorbed quantities. The obtained results suggest the existence of at least two types of adsorption sites on the APA surface characterized by different magnitudes of the Alq3 bonding strength. The related fluorescence spectra contained two peaks at wavelengths of 480 and 505 nm, which could be attributed to isolated Alq3 species inside nanovoids and aggregated Alq3 clusters in the pores of APA, respectively. The former species were attached to the adsorption sites with higher binding energies, whereas the latter ones were bound to the APA surface more weakly. Similar results were obtained for the Alq3 species formed from the HQ solution, which quantitatively exceeded the number of the Alq3 species adsorbed from the Alq3 solution. Alq3 molecules were formed in the HQ solution during the reaction of HQ molecules with the Al3+ ions in the oxide dissolution zone near the oxide/electrolyte interface through the cracks and the Al3+ ions adsorbed on surface of pore and cracks. In addition, it was suggested that HQ molecules could penetrate the nanovoids more easily than Alq3 species because of their smaller sizes, which resulted in higher magnitudes of the adsorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA