Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(39): 24534-24544, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929005

RESUMEN

Auditory hair cells receive olivocochlear efferent innervation, which refines tonotopic mapping, improves sound discrimination, and mitigates acoustic trauma. The olivocochlear synapse involves α9α10 nicotinic acetylcholine receptors (nAChRs), which assemble in hair cells only coincident with cholinergic innervation and do not express in recombinant mammalian cell lines. Here, genome-wide screening determined that assembly and surface expression of α9α10 require ligand binding. Ion channel function additionally demands an auxiliary subunit, which can be transmembrane inner ear (TMIE) or TMEM132e. Both of these single-pass transmembrane proteins are enriched in hair cells and underlie nonsyndromic human deafness. Inner hair cells from TMIE mutant mice show altered postsynaptic α9α10 function and retain α9α10-mediated transmission beyond the second postnatal week associated with abnormally persistent cholinergic innervation. Collectively, this study provides a mechanism to link cholinergic input with α9α10 assembly, identifies unexpected functions for human deafness genes TMIE/TMEM132e, and enables drug discovery for this elusive nAChR implicated in prevalent auditory disorders.


Asunto(s)
Sordera/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Cóclea/metabolismo , Sordera/genética , Humanos , Ligandos , Proteínas de la Membrana/genética , Ratones , Unión Proteica , Receptores Nicotínicos/genética , Sinapsis/metabolismo
2.
J Pharmacol Exp Ther ; 357(2): 394-414, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26989142

RESUMEN

Members of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) subtype of ionotropic glutamate receptors mediate the majority of fast synaptic transmission within the mammalian brain and spinal cord, representing attractive targets for therapeutic intervention. Here, we describe novel AMPA receptor modulators that require the presence of the accessory protein CACNG8, also known as transmembrane AMPA receptor regulatory protein γ8 (TARP-γ8). Using calcium flux, radioligand binding, and electrophysiological assays of wild-type and mutant forms of TARP-γ8, we demonstrate that these compounds possess a novel mechanism of action consistent with a partial disruption of the interaction between the TARP and the pore-forming subunit of the channel. One of the molecules, 5-[2-chloro-6-(trifluoromethoxy)phenyl]-1,3-dihydrobenzimidazol-2-one (JNJ-55511118), had excellent pharmacokinetic properties and achieved high receptor occupancy following oral administration. This molecule showed strong, dose-dependent inhibition of neurotransmission within the hippocampus, and a strong anticonvulsant effect. At high levels of receptor occupancy in rodent in vivo models, JNJ-55511118 showed a strong reduction in certain bands on electroencephalogram, transient hyperlocomotion, no motor impairment on rotarod, and a mild impairment in learning and memory. JNJ-55511118 is a novel tool for reversible AMPA receptor inhibition, particularly within the hippocampus, with potential therapeutic utility as an anticonvulsant or neuroprotectant. The existence of a molecule with this mechanism of action demonstrates the possibility of pharmacological targeting of accessory proteins, increasing the potential number of druggable targets.


Asunto(s)
Bencimidazoles/uso terapéutico , Canales de Calcio/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Receptores AMPA/efectos de los fármacos , Animales , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Diseño de Fármacos , Electroencefalografía/efectos de los fármacos , Células HEK293 , Humanos , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Mutación/genética , Neuronas/efectos de los fármacos , Equilibrio Postural/efectos de los fármacos , Ratas Sprague-Dawley , Receptores AMPA/genética
3.
Proc Natl Acad Sci U S A ; 105(25): 8784-9, 2008 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-18574153

RESUMEN

General anesthetics (GAs) have transformed surgery through their actions to depress the central nervous system and blunt the perception of surgical insults. Counterintuitively, many of these agents activate peripheral nociceptive neurons. However, the underlying mechanisms and significance of these effects have not been explored. Here, we show that clinical concentrations of noxious i.v. and inhalation GAs excite sensory neurons by selectively activating TRPA1, a key ion channel in the pain pathway. Further, these GAs induce pain-related responses in mice that are abolished in TRPA1-null animals. Significantly, TRPA1-dependent neurogenic inflammation is greater in mice anesthetized with pungent compared with nonpungent anesthetics. Thus, our results show that TRPA1 is essential for sensing noxious GAs. The pronociceptive effects of GAs combined with surgical tissue damage could lead to a paradoxical increase in postoperative pain and inflammation.


Asunto(s)
Anestésicos Generales/farmacología , Canales de Calcio/metabolismo , Inflamación/fisiopatología , Isoflurano/farmacología , Dolor/fisiopatología , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Ancirinas , Humanos , Inflamación/metabolismo , Ratones , Dolor/metabolismo , Ratas , Canal Catiónico TRPA1 , Canales Catiónicos TRPC , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismo
4.
Science ; 373(6556)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34385370

RESUMEN

The neurotransmitter acetylcholine (ACh) acts in part through a family of nicotinic ACh receptors (nAChRs), which mediate diverse physiological processes including muscle contraction, neurotransmission, and sensory transduction. Pharmacologically, nAChRs are responsible for tobacco addiction and are targeted by medicines for hypertension and dementia. Nicotinic AChRs were the first ion channels to be isolated. Recent studies have identified molecules that control nAChR biogenesis, trafficking, and function. These nAChR accessories include protein and chemical chaperones as well as auxiliary subunits. Whereas some factors act on many nAChRs, others are receptor specific. Discovery of these regulatory mechanisms is transforming nAChR research in cells and tissues ranging from central neurons to spinal ganglia to cochlear hair cells. Nicotinic AChR-specific accessories also enable drug discovery on high-confidence targets for psychiatric, neurological, and auditory disorders.


Asunto(s)
Chaperonas Moleculares/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Membrana Celular/metabolismo , Descubrimiento de Drogas , Retículo Endoplásmico/metabolismo , Humanos , Ligandos , Músculo Esquelético/metabolismo , Neurofarmacología , Nicotina/metabolismo , Subunidades de Proteína/metabolismo , Receptores Nicotínicos/química
5.
Nat Commun ; 11(1): 2799, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493979

RESUMEN

Small molecule polyamines are abundant in all life forms and participate in diverse aspects of cell growth and differentiation. Spermidine/spermine acetyltransferase (SAT1) is the rate-limiting enzyme in polyamine catabolism and a primary genetic risk factor for suicidality. Here, using genome-wide screening, we find that SAT1 selectively controls nicotinic acetylcholine receptor (nAChR) biogenesis. SAT1 specifically augments assembly of nAChRs containing α7 or α4ß2, but not α6 subunits. Polyamines are classically studied as regulators of ion channel gating that engage the nAChR channel pore. In contrast, we find polyamine effects on assembly involve the nAChR cytosolic loop. Neurological studies link brain polyamines with neurodegenerative conditions. Our pharmacological and transgenic animal studies find that reducing polyamines enhances cortical neuron nAChR expression and augments nicotine-mediated neuroprotection. Taken together, we describe a most unexpected role for polyamines in regulating ion channel assembly, which provides a new avenue for nAChR neuropharmacology.


Asunto(s)
Canales Iónicos/metabolismo , Poliaminas/metabolismo , Receptores Nicotínicos/metabolismo , Acetiltransferasas , Animales , Biocatálisis , ADN Complementario/genética , Elementos de Facilitación Genéticos/genética , Fluorescencia , Genoma Humano , Células HEK293 , Humanos , Activación del Canal Iónico , Ratones , Neuronas/metabolismo , Neuroprotección/efectos de los fármacos , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Receptores Nicotínicos/química
6.
J Clin Invest ; 130(11): 6158-6170, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33074244

RESUMEN

The α6ß4 nicotinic acetylcholine receptor (nAChR) is enriched in dorsal root ganglia neurons and is an attractive non-opioid therapeutic target for pain. However, difficulty expressing human α6ß4 receptors in recombinant systems has precluded drug discovery. Here, genome-wide screening identified accessory proteins that enable reconstitution of human α6ß4 nAChRs. BARP, an auxiliary subunit of voltage-dependent calcium channels, promoted α6ß4 surface expression while IRE1α, an unfolded protein response sensor, enhanced α6ß4 receptor assembly. Effects on α6ß4 involve BARP's N-terminal region and IRE1α's splicing of XBP1 mRNA. Furthermore, clinical efficacy of nicotinic agents in relieving neuropathic pain best correlated with their activity on α6ß4. Finally, BARP-knockout, but not NACHO-knockout mice lacked nicotine-induced antiallodynia, highlighting the functional importance of α6ß4 in pain. These results identify roles for IRE1α and BARP in neurotransmitter receptor assembly and unlock drug discovery for the previously elusive α6ß4 receptor.


Asunto(s)
Agonistas Colinérgicos/farmacología , Endorribonucleasas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Colinérgicos/biosíntesis , Animales , Endorribonucleasas/genética , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN/efectos de los fármacos , Ratas , Receptores Colinérgicos/genética , Proteína 1 de Unión a la X-Box/genética
7.
Cell Rep ; 26(4): 866-874.e3, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30673609

RESUMEN

Acetylcholine gates a large family of nicotinic receptor cation channels that control neuronal excitation and neurotransmitter release. These receptors are key targets for neuropsychiatric disorders; however, difficulties in expressing nicotinic acetylcholine (nACh) receptors hamper elaboration of their pharmacology and obscure elucidation of their biological functions. Particularly intriguing are α6-containing nACh receptors, which mediate nicotine-induced dopamine release in striatum-nucleus accumbens. Using genome-wide cDNA screening, we identify three accessory proteins, ß-anchoring and -regulatory protein (BARP), lysosomal-associated membrane protein 5 (LAMP5), and SULT2B1, that complement the nACh receptor chaperone NACHO to reconstitute α6ß2ß3 channel function. Whereas NACHO mediates α6ß2ß3 assembly, BARP primarily enhances channel gating and LAMP5 and SULT2B1 promote receptor surface trafficking. BARP knockout mice show perturbations in presynaptic striatal nACh receptors that are consistent with BARP modulation of receptor desensitization. These studies unravel the molecular complexity of α6ß2ß3 biogenesis and enable physiological studies of this crucial neuropharmacological target.


Asunto(s)
Cuerpo Estriado , Núcleo Accumbens/metabolismo , Multimerización de Proteína , Receptores Nicotínicos/metabolismo , Transmisión Sináptica , Acetilcolina/genética , Acetilcolina/metabolismo , Animales , Cuerpo Estriado/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Compuestos Orgánicos , Ratas , Receptores Nicotínicos/genética
8.
Nat Commun ; 10(1): 2746, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227712

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) mediate and modulate synaptic transmission throughout the brain, and contribute to learning, memory, and behavior. Dysregulation of α7-type nAChRs in neuropsychiatric as well as immunological and oncological diseases makes them attractive targets for pharmaceutical development. Recently, we identified NACHO as an essential chaperone for α7 nAChRs. Leveraging the robust recombinant expression of α7 nAChRs with NACHO, we utilized genome-wide cDNA library screening and discovered that several anti-apoptotic Bcl-2 family proteins further upregulate receptor assembly and cell surface expression. These effects are mediated by an intracellular motif on α7 that resembles the BH3 binding domain of pro-apoptotic Bcl-2 proteins, and can be blocked by BH3 mimetic Bcl-2 inhibitors. Overexpression of Bcl-2 member Mcl-1 in neurons enhanced surface expression of endogenous α7 nAChRs, while a combination of chemotherapeutic Bcl2-inhibitors suppressed neuronal α7 receptor assembly. These results demonstrate that Bcl-2 proteins link α7 nAChR assembly to cell survival pathways.


Asunto(s)
Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neuronas/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Secuencias de Aminoácidos/genética , Animales , Benzotiazoles/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células HEK293 , Humanos , Isoquinolinas/farmacología , Chaperonas Moleculares/metabolismo , Mutación , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Agonistas Nicotínicos/farmacología , Cultivo Primario de Células , Unión Proteica/efectos de los fármacos , Piridinas/farmacología , Pirimidinas/farmacología , Ratas , Transmisión Sináptica/efectos de los fármacos , Tiofenos/farmacología , Regulación hacia Arriba , Receptor Nicotínico de Acetilcolina alfa 7/genética
9.
Mol Pharmacol ; 74(5): 1261-8, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18689441

RESUMEN

General anesthetics (GAs) are central nervous system depressants that render patients unresponsive to external stimuli. In contrast, many of these agents are also known to stimulate peripheral sensory nerves, raising the possibility that they may exacerbate tissue inflammation. We have found that pungent GAs excite sensory neurons by directly activating the transient receptor potential (TRP) A1 ion channel. Here, we show that GAs also sensitize the capsaicin receptor TRPV1, a key ion channel expressed in nociceptive neurons. Clinically relevant concentrations of isoflurane, sevoflurane, enflurane, and desflurane sensitize TRPV1 to capsaicin and protons and reduce the threshold for heat activation. Furthermore, isoflurane directly activates TRPV1 after stimulation of protein kinase C. Likewise, isoflurane excites TRPV1 and sensory neurons during concomitant application of bradykinin, a key inflammatory mediator formed during tissue injury. Thus, GAs can enhance the activation of TRPV1 that occurs during surgically induced tissue damage. These results support the hypothesis that some GAs, through direct actions at TRP channels, increase postsurgical pain and inflammation.


Asunto(s)
Anestésicos Generales/farmacología , Canales Catiónicos TRPV/efectos de los fármacos , Animales , Bradiquinina/fisiología , Capsaicina/farmacología , Línea Celular , Femenino , Humanos , Ratones , Técnicas de Placa-Clamp , Proteína Quinasa C/metabolismo , Xenopus laevis
10.
Neuron ; 96(5): 989-1001, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29216460

RESUMEN

Targeted therapy for neuropsychiatric disorders requires selective modulation of dysfunctional neuronal pathways. Receptors relevant to CNS disorders typically have associated proteins discretely expressed in specific neuronal pathways; these accessory proteins provide a new dimension for drug discovery. Recent studies show that targeting a TARP auxiliary subunit of AMPA receptors selectively modulates neuronal excitability in specific forebrain pathways relevant to epilepsy. Other medicinally important ion channels, gated by glutamate, γ-aminobutyric acid (GABA), and acetylcholine, also have associated proteins, which may be druggable. This emerging pharmacology of receptor-associated proteins provides a new approach for improving drug efficacy while mitigating side effects.


Asunto(s)
Neurofarmacología , Receptores de Neurotransmisores/efectos de los fármacos , Animales , Humanos , Proteínas del Tejido Nervioso/efectos de los fármacos
11.
Cell Rep ; 19(4): 688-696, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28445721

RESUMEN

Neuronal nicotinic acetylcholine receptors (nAChRs) participate in diverse aspects of brain function and mediate behavioral and addictive properties of nicotine. Neuronal nAChRs derive from combinations of α and ß subunits, whose assembly is tightly regulated. NACHO was recently identified as a chaperone for α7-type nAChRs. Here, we find NACHO mediates assembly of all major classes of presynaptic and postsynaptic nAChR tested. NACHO acts at early intracellular stages of nAChR subunit assembly and then synergizes with RIC-3 for receptor surface expression. NACHO knockout mice show profound deficits in binding sites for α-bungarotoxin, epibatidine, and conotoxin MII, illustrating essential roles for NACHO in proper assembly of α7-, α4ß2-, and α6-containing nAChRs, respectively. By contrast, GABAA receptors are unaffected consistent with NACHO specifically modulating nAChRs. NACHO knockout mice show abnormalities in locomotor and cognitive behaviors compatible with nAChR deficiency and underscore the importance of this chaperone for physiology and disease associated with nAChRs.


Asunto(s)
Encéfalo/metabolismo , Chaperonas Moleculares/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Sitios de Unión , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Bungarotoxinas/química , Bungarotoxinas/metabolismo , Línea Celular , Disfunción Cognitiva/patología , Conotoxinas/química , Conotoxinas/metabolismo , Humanos , Radioisótopos de Yodo/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Chaperonas Moleculares/genética , Neuronas/metabolismo , Nicotina/química , Nicotina/metabolismo , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Piridinas/química , Piridinas/metabolismo , Radiofármacos/química , Radiofármacos/metabolismo , Receptores Nicotínicos/genética
12.
Neuron ; 89(5): 948-55, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26875622

RESUMEN

Nicotine exerts its behavioral and additive actions through a family of brain nicotinic acetylcholine receptors (nAChRs). Enhancing α7-type nAChR signaling improves symptoms in Alzheimer's disease and schizophrenia. The pharmaceutical study of α7 receptors is hampered because these receptors do not form their functional pentameric structure in cell lines, and mechanisms that underlie α7 receptor assembly in neurons are not understood. Here, a genomic screening strategy solves this long-standing puzzle and identifies NACHO, a transmembrane protein of neuronal endoplasmic reticulum that mediates assembly of α7 receptors. NACHO promotes α7 protein folding, maturation through the Golgi complex, and expression at the cell surface. Knockdown of NACHO in cultured hippocampal neurons or knockout of NACHO in mice selectively and completely disrupts α7 receptor assembly and abolishes α7 channel function. This work identifies NACHO as an essential, client-specific chaperone for nAChRs and has implications for physiology and disease associated with these widely distributed neurotransmitter receptors.


Asunto(s)
Hipocampo/metabolismo , Neuronas/fisiología , Subunidades de Proteína/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Calnexina/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Glutámico/farmacología , Células HEK293 , Hipocampo/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Isoxazoles/farmacología , Masculino , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Subunidades de Proteína/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Serotonina/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/genética
13.
Nat Neurosci ; 16(8): 1032-41, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23852113

RESUMEN

Disrupted excitatory synapse maturation in GABAergic interneurons may promote neuropsychiatric disorders such as schizophrenia. However, establishing developmental programs for nascent synapses in GABAergic cells is confounded by their sparsity, heterogeneity and late acquisition of subtype-defining characteristics. We investigated synaptic development in mouse interneurons targeting cells by lineage from medial ganglionic eminence (MGE) or caudal ganglionic eminence (CGE) progenitors. MGE-derived interneuron synapses were dominated by GluA2-lacking AMPA-type glutamate receptors (AMPARs), with little contribution from NMDA-type receptors (NMDARs) throughout development. In contrast, CGE-derived cell synapses had large NMDAR components and used GluA2-containing AMPARs. In neonates, both MGE- and CGE-derived interneurons expressed primarily GluN2B subunit-containing NMDARs, which most CGE-derived interneurons retained into adulthood. However, MGE-derived interneuron NMDARs underwent a GluN2B-to-GluN2A switch that could be triggered acutely with repetitive synaptic activity. Our findings establish ganglionic eminence-dependent rules for early synaptic integration programs of distinct interneuron cohorts, including parvalbumin- and cholecystokinin-expressing basket cells.


Asunto(s)
Neuronas GABAérgicas/citología , Regulación del Desarrollo de la Expresión Génica , Hipocampo/citología , Interneuronas/citología , Neocórtex/citología , Plasticidad Neuronal , Receptores AMPA/química , Receptores de N-Metil-D-Aspartato/química , Telencéfalo/embriología , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores , Linaje de la Célula , Potenciales Postsinápticos Excitadores , Femenino , Neuronas GABAérgicas/metabolismo , Hipocampo/embriología , Hipocampo/crecimiento & desarrollo , Interneuronas/clasificación , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Proteínas del Tejido Nervioso/análisis , Especificidad de Órganos , Receptores AMPA/análisis , Receptores AMPA/biosíntesis , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/análisis , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética , Transmisión Sináptica , Telencéfalo/citología
14.
Curr Pharm Biotechnol ; 12(1): 95-101, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20932254

RESUMEN

Transient Receptor Potential Vanilloid Type 1 is a prominent "pain" receptor expressed in sensory afferent neurons. TRPV1 on peripheral nerve terminals detects a variety of noxious stimuli generated at sites of injury and inflammation, and in turn, drives the excitation and sensitization of C-fibers neurons. Significantly, TRPV1 is also located on the central terminals of sensory neurons projecting to the spinal cord and brainstem. These TRPV1 channels appear to stimulate the secretion of glutamate. Further, TRPV1 is expressed diffusely in the brain and there is emerging evidence for TRPV1 modulating transmission at various brain synapses. Here we discuss our current understanding of the potential roles for TRPV1 in synaptic transmission.


Asunto(s)
Activación del Canal Iónico , Neuronas Aferentes/fisiología , Nociceptores/fisiología , Médula Espinal/fisiopatología , Transmisión Sináptica , Canales Catiónicos TRPV/fisiología , Animales , Humanos , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores
15.
Neuron ; 70(2): 339-51, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21521618

RESUMEN

In cerebral cortex there is a developmental switch from NR2B- to NR2A-containing NMDA receptors (NMDARs) driven by activity and sensory experience. This subunit switch alters NMDAR function, influences synaptic plasticity, and its dysregulation is associated with neurological disorders. However, the mechanisms driving the subunit switch are not known. Here, we show in hippocampal CA1 pyramidal neurons that the NR2B to NR2A switch driven acutely by activity requires activation of NMDARs and mGluR5, involves PLC, Ca(2+) release from IP(3)R-dependent stores, and PKC activity. In mGluR5 knockout mice the developmental NR2B-NR2A switch in CA1 is deficient. Moreover, in visual cortex of mGluR5 knockout mice, the NR2B-NR2A switch evoked in vivo by visual experience is absent. Thus, we establish that mGluR5 and NMDARs are required for the activity-dependent NR2B-NR2A switch and play a critical role in experience-dependent regulation of NMDAR subunit composition in vivo.


Asunto(s)
Adaptación Fisiológica/fisiología , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Estrenos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/citología , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , N-Metilaspartato/farmacología , Piperidinas/farmacología , Células Piramidales/efectos de los fármacos , Piridinas/farmacología , Pirrolidinonas/farmacología , Quinoxalinas/farmacología , Ratas , Ratas Wistar , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/genética , Tiazoles/farmacología , Factores de Tiempo , Corteza Visual/fisiología
16.
Neuron ; 67(6): 984-96, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20869595

RESUMEN

N-methyl-D-aspartate (NMDA) receptors (NMDARs) play a central role in development, synaptic plasticity, and neurological disease. NMDAR subunit composition defines their biophysical properties and downstream signaling. Casein kinase 2 (CK2) phosphorylates the NR2B subunit within its PDZ-binding domain; however, the consequences for NMDAR localization and function are unclear. Here we show that CK2 phosphorylation of NR2B regulates synaptic NR2B and NR2A in response to activity. We find that CK2 phosphorylates NR2B, but not NR2A, to drive NR2B-endocytosis and remove NR2B from synapses resulting in an increase in synaptic NR2A expression. During development there is an activity-dependent switch from NR2B to NR2A at cortical synapses. We observe an increase in CK2 expression and NR2B phosphorylation over this same critical period and show that the acute activity-dependent switch in NR2 subunit composition at developing hippocampal synapses requires CK2 activity. Thus, CK2 plays a central role in determining the NR2 subunit content of synaptic NMDARs.


Asunto(s)
Quinasa de la Caseína II/fisiología , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Adenosina Trifosfato/farmacocinética , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Bencimidazoles/farmacología , Biotinilación/métodos , Células Cultivadas , Corteza Cerebral/citología , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Endocitosis/genética , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Inmunoprecipitación/métodos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Neuronas/efectos de los fármacos , Dominios PDZ/fisiología , Técnicas de Placa-Clamp , Isótopos de Fósforo/farmacocinética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Piperidinas/farmacología , Subunidades de Proteína/genética , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética , Bloqueadores de los Canales de Sodio/farmacología , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Sinaptofisina/metabolismo , Tetrodotoxina/farmacología , Transfección/métodos , Tirosina/metabolismo
17.
Nat Neurosci ; 13(10): 1199-207, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20802490

RESUMEN

Trafficking of AMPA receptors (AMPARs) is important for many forms of synaptic plasticity. However, the link between activity and resulting synaptic alterations is not fully understood. We identified a direct interaction between N-ethylmaleimide-sensitive fusion protein (NSF), an ATPase involved in membrane fusion events and stabilization of surface AMPARs, and Polo-like kinase- 2 (Plk2), an activity-inducible kinase that homeostatically decreases excitatory synapse number and strength. Plk2 disrupted the interaction of NSF with the GluA2 subunit of AMPARs, promoting extensive loss of surface GluA2 in rat hippocampal neurons, greater association of GluA2 with adaptor proteins PICK1 and GRIP1, and decreased synaptic AMPAR current. Plk2 engagement of NSF, but not Plk2 kinase activity, was required for this mechanism and occurred through a motif in the Plk2 protein that was independent of the canonical polo box interaction sites. These data reveal that heightened synaptic activity, acting through Plk2, leads to homeostatic decreases in surface AMPAR expression via the direct dissociation of NSF from GluA2.


Asunto(s)
Homeostasis/fisiología , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores AMPA/metabolismo , Adenosina Trifosfato/farmacología , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/fisiología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Chlorocebus aethiops , Proteínas del Citoesqueleto , Embrión de Mamíferos , Endocitosis/efectos de los fármacos , Endocitosis/genética , Antagonistas del GABA/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Homeostasis/genética , Humanos , Inmunoprecipitación/métodos , Péptidos y Proteínas de Señalización Intracelular , Microscopía Confocal/métodos , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Picrotoxina/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Interferencia de ARN/fisiología , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Factores de Tiempo , Transfección/métodos
18.
Curr Biol ; 19(11): 900-8, 2009 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-19481459

RESUMEN

BACKGROUND: Ionotropic glutamate receptors (iGluRs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the central nervous system. Based on both molecular and pharmacological criteria, iGluRs have been divided into two major classes, the non-NMDA class, which includes both AMPA and kainate subtypes of receptors, and the NMDA class. One evolutionarily conserved feature of iGluRs is their desensitization in the continued presence of glutamate. Thus, when in a desensitized state, iGluRs can be bound to glutamate, yet the channel remains closed. However, the relevance of desensitization to nervous system function has remained enigmatic. RESULTS: Here, we report the identification and characterization of a novel polypeptide (con-ikot-ikot) from the venom of a predatory marine snail Conus striatus that specifically disrupts the desensitization of AMPA receptors (AMPARs). The stoichiometry of con-ikot-ikot appears reminiscent of the proposed subunit organization of AMPARs, i.e., a dimer of dimers, suggesting that it acts as a molecular four-legged clamp that holds the AMPAR channel open. Application of con-ikot-ikot to hippocampal slices caused a large and rapid increase in resting AMPAR-mediated current leading to neuronal death. CONCLUSIONS: Our findings provide insight into the mechanisms that regulate receptor desensitization and demonstrate that in the arms race between prey and predators, evolution has selected for a toxin that blocks AMPAR desensitization, thus revealing the fundamental importance of desensitization for regulating neural function.


Asunto(s)
Caracol Conus/metabolismo , Venenos de Moluscos/química , Neurotoxinas/farmacología , Péptidos/farmacología , Receptores AMPA/metabolismo , Animales , Benzotiadiazinas/farmacología , Sitios de Unión , Fraccionamiento Químico , Cromatografía Líquida de Alta Presión , Caracol Conus/química , Dimerización , Conductividad Eléctrica , Hipocampo/efectos de los fármacos , Neurotoxinas/química , Neurotoxinas/aislamiento & purificación , Técnicas de Placa-Clamp , Péptidos/química , Péptidos/aislamiento & purificación , Ratas , Receptores AMPA/química , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Xenopus
19.
J Physiol ; 585(Pt 2): 469-82, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17932142

RESUMEN

TRPV1 and TRPM8 are sensory nerve ion channels activated by heating and cooling, respectively. A variety of physical and chemical stimuli activate these receptors in a synergistic manner but the underlying mechanisms are unclear. Both channels are voltage sensitive, and temperature and ligands modulate this voltage dependence. Thus, a voltage-sensing mechanism has become an attractive model to explain the generalized gating of these and other thermo-sensitive TRP channels. We show here using whole-cell and single channel measurements that voltage produces only a partial activation of TRPV1 and TRPM8. At room temperature (20-25 degrees C) membrane depolarization evokes responses that saturate at approximately 50-60% of the maximum open probability. Furthermore, high concentrations of capsaicin (10 microm), resiniferatoxin (5 microm) and menthol (6 mm) reveal voltage-independent gating. Similarly, other modes of TRPV1 regulation including heat, protein kinase C-dependent phosphorylation, and protons enhance both the efficacy and sensitivity of voltage activation. In contrast, the TRPV1 antagonist capsazepine produces the opposite effects. These data can be explained by an allosteric model in which voltage, temperature, agonists and inverse agonists are independently coupled, either positively or negatively, to channel gating. Thus, voltage acts separately but in concert with other stimuli to regulate channel activation, and, therefore, a voltage-sensitive mechanism is unlikely to represent a final, gating mechanism for these channels.


Asunto(s)
Calor , Activación del Canal Iónico/fisiología , Neuronas Aferentes/fisiología , Proteína Quinasa C/metabolismo , Canales Catiónicos TRPM/fisiología , Canales Catiónicos TRPV/fisiología , Regulación Alostérica , Animales , Capsaicina/análogos & derivados , Capsaicina/farmacología , Línea Celular , Diterpenos/farmacología , Estimulación Eléctrica , Humanos , Activación del Canal Iónico/efectos de los fármacos , Riñón/citología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Modelos Químicos , Ratas , Fármacos del Sistema Sensorial/farmacología , Canales Catiónicos TRPM/química , Canales Catiónicos TRPV/química
20.
J Physiol ; 578(Pt 2): 397-411, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17038422

RESUMEN

Omega-3 (n-3) fatty acids are essential for proper neuronal function, and they possess prominent analgesic properties, yet their underlying signalling mechanisms are unclear. Here we show that n-3 fatty acids interact directly with TRPV1, an ion channel expressed in nociceptive neurones and brain. These fatty acids activate TRPV1 in a phosphorylation-dependent manner, enhance responses to extracellular protons, and displace binding of the ultrapotent TRPV1 ligand [3H]resiniferatoxin. In contrast to their agonistic properties, n-3 fatty acids competitively inhibit the responses of vanilloid agonists. These actions occur in mammalian cells in the physiological concentration range of 1-10 mum. Significantly, docosahexaenoic acid exhibits the greatest efficacy as an agonist, whereas eicosapentaenoic acid and linolenic acid are markedly more effective inhibitors. Similarly, eicosapentaenoic acid but not docosahexaenoic acid profoundly reduces capsaicin-evoked pain-related behaviour in mice. These effects are independent of alterations in membrane elasticity because the micelle-forming detergent Triton X-100 only minimally affects TRPV1 properties. Thus, n-3 fatty acids differentially regulate TRPV1 and this form of signalling may contribute to their biological effects. Further, these results suggest that dietary supplementation with selective n-3 fatty acids would be most beneficial for the treatment of pain.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Canales Catiónicos TRPV/fisiología , Animales , Unión Competitiva/efectos de los fármacos , Calcio/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacología , Capsaicina/toxicidad , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Diterpenos/metabolismo , Ácidos Grasos Omega-6/farmacología , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ácido Linoleico/farmacología , Masculino , Fluidez de la Membrana/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Oocitos/fisiología , Dolor/inducido químicamente , Dolor/prevención & control , ARN Complementario/administración & dosificación , ARN Complementario/genética , Ratas , Canales Catiónicos TRPV/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA