Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
2.
FEBS Lett ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604982

RESUMEN

Aging is associated with a global decline in stem cell function. To date, several strategies have been proposed to rejuvenate aged stem cells: most of these result in functional improvement of the tissue where the stem cells reside, but the impact on the lifespan of the whole organism has been less clearly established. Here, we review some of the most recent work dealing with interventions that improve the regenerative capacity of aged somatic stem cells in mammals and that might have important translational possibilities. Overall, we underscore that somatic stem cell rejuvenation represents a strategy to improve tissue homeostasis upon aging and present some recent approaches with the potential to affect health span and lifespan of the whole organism.

3.
Nat Commun ; 15(1): 1604, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383534

RESUMEN

Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium (HE) in the aorta- gonads-and mesonephros (AGM) region and reside within Intra-aortic hematopoietic clusters (IAHC) along with hematopoietic progenitors (HPC). The signalling mechanisms that distinguish HSCs from HPCs are unknown. Notch signaling is essential for arterial specification, IAHC formation and HSC activity, but current studies on how Notch segregates these different fates are inconsistent. We now demonstrate that Notch activity is highest in a subset of, GFI1 + , HSC-primed HE cells, and is gradually lost with HSC maturation. We uncover that the HSC phenotype is maintained due to increasing levels of NOTCH1 and JAG1 interactions on the surface of the same cell (cis) that renders the NOTCH1 receptor from being activated. Forced activation of the NOTCH1 receptor in IAHC activates a hematopoietic differentiation program. Our results indicate that NOTCH1-JAG1 cis-inhibition preserves the HSC phenotype in the hematopoietic clusters of the embryonic aorta.


Asunto(s)
Células Madre Hematopoyéticas , Receptor Notch1 , Receptor Notch1/genética , Receptor Notch1/metabolismo , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/genética , Aorta/metabolismo , Arterias/metabolismo , Mesonefro , Gónadas/metabolismo
4.
STAR Protoc ; 3(3): 101483, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35769923

RESUMEN

Quantitative 3D imaging of organ-wide cellular and subcellular components is central for revealing and understanding complex interactions between stem cells and their microenvironment. Here, we present a gentle but fast whole-mount immunofluorescence staining protocol for 3D confocal microscopy (iFAST3D) that preserves the 3D structure of the entire tissue and that of subcellular structures with high fidelity. The iFAST3D protocol enables reproducible and high-resolution 3D imaging of stem cells and various niche components for many mouse organs and tissues. For complete details on the use and execution of this protocol, please refer to Saçma et al. (2019).


Asunto(s)
Imagenología Tridimensional , Células Madre , Animales , Imagenología Tridimensional/métodos , Ratones , Microscopía Confocal/métodos , Coloración y Etiquetado
5.
NPJ Regen Med ; 7(1): 78, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581635

RESUMEN

One goal of regenerative medicine is to rejuvenate tissues and extend lifespan by restoring the function of endogenous aged stem cells. However, evidence that somatic stem cells can be targeted in vivo to extend lifespan is still lacking. Here, we demonstrate that after a short systemic treatment with a specific inhibitor of the small RhoGTPase Cdc42 (CASIN), transplanting aged hematopoietic stem cells (HSCs) from treated mice is sufficient to extend the healthspan and lifespan of aged immunocompromised mice without additional treatment. In detail, we show that systemic CASIN treatment improves strength and endurance of aged mice by increasing the myogenic regenerative potential of aged skeletal muscle stem cells. Further, we show that CASIN modifies niche localization and H4K16ac polarity of HSCs in vivo. Single-cell profiling reveals changes in HSC transcriptome, which underlie enhanced lymphoid and regenerative capacity in serial transplantation assays. Overall, we provide proof-of-concept evidence that a short systemic treatment to decrease Cdc42 activity improves the regenerative capacity of different endogenous aged stem cells in vivo, and that rejuvenated HSCs exert a broad systemic effect sufficient to extend murine health- and lifespan.

6.
Front Immunol ; 12: 738204, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858399

RESUMEN

The hematopoietic stem cell (HSC) niche is a specialized microenvironment, where a complex and dynamic network of interactions across multiple cell types regulates HSC function. During the last years, it became progressively clearer that changes in the HSC niche are responsible for specific alterations of HSC behavior. The aging of the bone marrow (BM) microenvironment has been shown to critically contribute to the decline in HSC function over time. Interestingly, while upon aging some niche structures within the BM are degenerated and negatively affect HSC functionality, other niche cells and specific signals are preserved and essential to retaining HSC function and regenerative capacity. These new findings on the role of the aging BM niche critically depend on the implementation of new technical tools, developed thanks to transdisciplinary approaches, which bring together different scientific fields. For example, the development of specific mouse models in addition to coculture systems, new 3D-imaging tools, ossicles, and ex-vivo BM mimicking systems is highlighting the importance of new technologies to unravel the complexity of the BM niche on aging. Of note, an exponential impact in the understanding of this biological system has been recently brought by single-cell sequencing techniques, spatial transcriptomics, and implementation of artificial intelligence and deep learning approaches to data analysis and integration. This review focuses on how the aging of the BM niche affects HSCs and on the new tools to investigate the specific alterations occurring in the BM upon aging. All these new advances in the understanding of the BM niche and its regulatory function on HSCs have the potential to lead to novel therapeutical approaches to preserve HSC function upon aging and disease.


Asunto(s)
Envejecimiento/fisiología , Médula Ósea/fisiología , Células Madre Hematopoyéticas/fisiología , Nicho de Células Madre/fisiología , Animales , Aprendizaje Profundo , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Análisis de la Célula Individual
7.
Sci Rep ; 10(1): 15086, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934320

RESUMEN

The myogenic factor MyoD regulates skeletal muscle differentiation by interacting with a variety of chromatin-modifying complexes. Although MyoD can induce and maintain chromatin accessibility at its target genes, its binding and trans-activation ability can be limited by some types of not fully characterized epigenetic constraints. In this work we analysed the role of PARP1 in regulating MyoD-dependent gene expression. PARP1 is a chromatin-associated enzyme, playing a well recognized role in DNA repair and that is implicated in transcriptional regulation. PARP1 affects gene expression through multiple mechanisms, often involving the Poly(ADP-ribosyl)ation of chromatin proteins. In line with PARP1 down-regulation during differentiation, we observed that PARP1 depletion boosts the up-regulation of MyoD targets, such as p57, myogenin, Mef2C and p21, while its re-expression reverts this effect. We also found that PARP1 interacts with some MyoD-binding regions and that its presence, independently of the enzymatic activity, interferes with MyoD recruitment and gene induction. We finally suggest a relationship between the binding of PARP1 and the loss of the activating histone modification H3K4me3 at MyoD-binding regions. This work highlights not only a novel player in the epigenetic control of myogenesis, but also a repressive and catalytic-independent mechanisms by which PARP1 regulates transcription.


Asunto(s)
Diferenciación Celular/genética , Regulación de la Expresión Génica/genética , Músculos/fisiología , Proteína MioD/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Animales , Línea Celular , Cromatina/genética , Reparación del ADN/genética , Histonas/genética , Ratones , Desarrollo de Músculos/genética , Transcripción Genética/genética , Regulación hacia Arriba/genética
8.
Cell Death Dis ; 11(8): 647, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32811813

RESUMEN

Despite their emerging relevance to fully understand disease pathogenesis, we have as yet a poor understanding as to how biomechanical signals are integrated with specific biochemical pathways to determine cell behaviour. Mesothelial-to-mesenchymal transition (MMT) markers colocalized with TGF-ß1-dependent signaling and yes-associated protein (YAP) activation across biopsies from different pathologies exhibiting peritoneal fibrosis, supporting mechanotransduction as a central driving component of these class of fibrotic lesions and its crosstalk with specific signaling pathways. Transcriptome and proteome profiling of the response of mesothelial cells (MCs) to linear cyclic stretch revealed molecular changes compatible with bona fide MMT, which (i) overlapped with established YAP target gene subsets, and were largely dependent on endogenous TGF-ß1 signaling. Importantly, TGF-ß1 blockade blunts the transcriptional upregulation of these gene signatures, but not the mechanical activation and nuclear translocation of YAP per se. We studied the role therein of caveolin-1 (CAV1), a plasma membrane mechanotransducer. Exposure of CAV1-deficient MCs to cyclic stretch led to a robust upregulation of MMT-related gene programs, which was blunted upon TGF-ß1 inhibition. Conversely, CAV1 depletion enhanced both TGF-ß1 and TGFBRI expression, whereas its re-expression blunted mechanical stretching-induced MMT. CAV1 genetic deficiency exacerbated MMT and adhesion formation in an experimental murine model of peritoneal ischaemic buttons. Taken together, these results support that CAV1-YAP/TAZ fine-tune the fibrotic response through the modulation of MMT, onto which TGF-ß1-dependent signaling coordinately converges. Our findings reveal a cooperation between biomechanical and biochemical signals in the triggering of MMT, representing a novel potential opportunity to intervene mechanically induced disorders coursing with peritoneal fibrosis, such as post-surgical adhesions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Caveolina 1/metabolismo , Fibrosis Peritoneal/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Caveolina 1/fisiología , Caveolinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Diálisis Peritoneal/métodos , Fibrosis Peritoneal/genética , Fibrosis Peritoneal/patología , Peritoneo/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo , Adherencias Tisulares/metabolismo , Factores de Transcripción/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Señalizadoras YAP
9.
Epigenetics Chromatin ; 12(1): 8, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651140

RESUMEN

BACKGROUND: The cell-cycle inhibitor p57kip2 plays a critical role in mammalian development by coordinating cell proliferation and differentiation in many cell types. p57kip2 expression is finely regulated by several epigenetic mechanisms, including paternal imprinting. Kcnq1ot1, a long non-coding RNA (LncRNA), whose gene maps to the p57Kip2 imprinting domain, is expressed exclusively from the paternal allele and participates in the cis-silencing of the neighboring imprinted genes through chromatin-level regulation. In light of our previous evidence of a functional interaction between myogenic factors and imprinting control elements in the regulation of the maternal p57Kip2 allele during muscle differentiation, we examined the possibility that also Kcnq1ot1 could play an imprinting-independent role in the control of p57Kip2 expression in muscle cells. RESULTS: We found that Kcnq1ot1 depletion by siRNA causes the upregulation of the maternal and functional p57Kip2 allele during differentiation, suggesting a previously undisclosed role for this LncRNA. Consistently, Chromatin Oligo-affinity Precipitation assays showed that Kcnq1ot1 physically interacts not only with the paternal imprinting control region of the locus, as already known, but also with both maternal and paternal alleles of a novel p57Kip2 regulatory region, located intragenically and containing two binding sites for the muscle-specific factor MyoD. Moreover, chromatin immunoprecipitation assays after Kcnq1ot1 depletion demonstrated that the LncRNA is required for the accumulation of H3K27me3, a chromatin modification catalyzed by the histone-methyl-transferase EZH2, at the maternal p57kip2 intragenic region. Finally, upon differentiation, the binding of MyoD to this region and its physical interaction with Kcnq1ot1, analyzed by ChIP and RNA immunoprecipitation assays, correlate with the loss of EZH2 and H3K27me3 from chromatin and with p57Kip2 de-repression. CONCLUSIONS: These findings highlight the existence of an imprinting-independent role of Kcnq1ot1, adding new insights into the biology of a still mysterious LncRNA. Moreover, they expand our knowledge about the molecular mechanisms underlying the tight and fine regulation of p57Kip2 during differentiation and, possibly, its aberrant silencing observed in several pathologic conditions.


Asunto(s)
Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Histonas/metabolismo , Herencia Materna , Células Musculares/metabolismo , ARN Largo no Codificante/genética , Animales , Diferenciación Celular , Línea Celular , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Impresión Genómica , Ratones , Ratones Endogámicos C57BL , Células Musculares/citología , Proteína MioD/metabolismo , ARN Largo no Codificante/metabolismo
10.
Front Biosci (Landmark Ed) ; 23(1): 83-108, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28930539

RESUMEN

p57kip2 is the most complex member of the CIP/KIP family of cyclin-dependent kinase inhibitors and plays a fundamental role in regulating cell cycle and differentiation during mammalian development. Consistently with a key role for p57kip2 in the spatial and temporal control of cell proliferation, its expression is fine-tuned by multiple regulatory mechanisms, resulting in a tissue-, developmental phase- and cell type-specific pattern. Moreover, p57kip2 is an imprinted gene, further supporting the importance of its proper expression dosage. Importantly, misregulation of p57kip2 expression has been associated, more frequently than mutations in its coding region, to human growth disorders, such as Beckwith-Wiedemann and Silver-Russell syndromes, as well as to the onset of several types of cancers. This review will summarize the molecular mechanisms regulating p57kip2 transcription during differentiation and development, their relationship with the imprinting control and their alterations in growth-related diseases and cancer. Particular attention will be given to the role of epigenetic mechanisms, involving DNA methylation, histone modifications, long-range chromatin interactions and non-coding RNAs in modulating and integrating the functions of cis-regulatory elements and trans-acting factors.


Asunto(s)
Diferenciación Celular/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Perfilación de la Expresión Génica , Neoplasias/genética , Células Madre/metabolismo , Activación Transcripcional , Animales , Síndrome de Beckwith-Wiedemann/genética , Metilación de ADN , Humanos
11.
Biochim Biophys Acta Mol Basis Dis ; 1864(12): 3598-3614, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30279138

RESUMEN

Skeletal muscle (SkM) atrophy is caused by several and heterogeneous conditions, such as cancer, neuromuscular disorders and aging. In most types of SkM atrophy overall rates of protein synthesis are suppressed, protein degradation is consistently elevated and atrogenes, such as the ubiquitin ligase Atrogin-1/MAFbx, are up-regulated. The molecular regulators of SkM waste are multiple and only in part known. Sphingolipids represent a class of bioactive molecules capable of modulating the destiny of many cell types, including SkM cells. In particular, we and others have shown that sphingosine 1phosphate (S1P), formed by sphingosine kinase (SphK), is able to act as trophic and morphogenic factor in myoblasts. Here, we report the first evidence that the atrophic phenotype observed in both muscle obtained from mice bearing the C26 adenocarcinoma and C2C12 myotubes treated with dexamethasone was characterized by reduced levels of active phospho-SphK1. The importance of SphK1 activity is also confirmed by the specific pharmacological inhibition of SphK1 able to increase Atrogin-1/MAFbx expression and reduce myotube size and myonuclei number. Furthermore, we found that SkM atrophy was accomplished by significant increase of S1P transporter Spns2 and in changes in the pattern of S1P receptor (S1PRs) subtype expression paralleled by increased Atrogin-1/MAFbx expression, suggesting a role for the released S1P and of specific S1PR-mediated signaling pathways in the control of the ubiquitin ligase. Altogether, these findings provide the first evidence that SphK1/released S1P/S1PR axis acts as a molecular regulator of SkM atrophy, thereby representing a new possible target for therapy in many patho-physiological conditions.


Asunto(s)
Lisofosfolípidos/metabolismo , Atrofia Muscular/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Animales , Línea Celular , Dexametasona , Femenino , Ratones Endogámicos BALB C , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/etiología , Atrofia Muscular/patología , Neoplasias/complicaciones , Esfingosina/metabolismo
12.
Stem Cells Int ; 2018: 5034679, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29713350

RESUMEN

Bone marrow-derived mesenchymal stromal cell- (BM-MSC-) based therapy is a promising option for regenerative medicine. An important role in the control of the processes influencing the BM-MSC therapeutic efficacy, namely, extracellular matrix remodelling and proliferation and secretion ability, is played by matrix metalloproteinase- (MMP-) 2. Therefore, the identification of paracrine/autocrine regulators of MMP-2 function may be of great relevance for improving BM-MSC therapeutic potential. We recently reported that BM-MSCs release the bioactive lipid sphingosine 1-phosphate (S1P) and, here, we demonstrated an impairment of MMP-2 expression/release when the S1P receptor subtype S1PR1 is blocked. Notably, active S1PR1/MMP-2 signalling is required for F-actin structure assembly (lamellipodia, microspikes, and stress fibers) and, in turn, cell proliferation. Moreover, in experimental conditions resembling the damaged/regenerating tissue microenvironment (hypoxia), S1P/S1PR1 system is also required for HIF-1α expression and vinculin reduction. Our findings demonstrate for the first time the trophic role of S1P/S1PR1 signalling in maintaining BM-MSCs' ability to modulate MMP-2 function, necessary for cytoskeleton reorganization and cell proliferation in both normoxia and hypoxia. Altogether, these data provide new perspectives for considering S1P/S1PR1 signalling a pharmacological target to preserve BM-MSC properties and to potentiate their beneficial potential in tissue repair.

13.
PLoS One ; 9(9): e108662, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25264785

RESUMEN

Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Lisofosfolípidos/farmacología , Células Madre Mesenquimatosas/metabolismo , Mioblastos Esqueléticos/metabolismo , Regeneración/efectos de los fármacos , Esfingosina/análogos & derivados , Animales , Células de la Médula Ósea , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Lisofosfolípidos/metabolismo , Ratones , Comunicación Paracrina/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Transducción de Señal , Esfingosina/metabolismo , Esfingosina/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA