Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Histopathology ; 71(3): 393-405, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28425130

RESUMEN

AIMS: The clinical outcome of patients with locally advanced rectal cancer who undergo neoadjuvant chemoradiotherapy (CRT) is influenced by the tumour response to treatment, which is reflected by tumour regression grade and post-treatment (y) TNM stage. Little is known about the prognostic value of pretreatment histopathological features of the tumour that may be useful to discriminate potential non-responders and to design tailored therapeutic strategies. In this study, we aimed to investigate the prognostic role of poorly differentiated clusters (PDCs) of neoplastic cells in pretreatment biopsies of patients with rectal cancer treated with neoadjuvant CRT. METHODS AND RESULTS: Grading based on PDC counting was retrospectively applied to 204 pretreatment endoscopic biopsies of rectal carcinomas from patients treated with neoadjuvant CRT and surgery. Interobserver agreement in the assessment of PDC grade was good. High PDC grade was significantly associated with high yT stage (P = 0.044), yM+ status (P = 0.0004), and unchanged TNM stage or TNM upstaging (P = 0.032). In addition, high PDC grade was a significant and independent prognostic factor for cancer-specific survival. CONCLUSIONS: PDC grade may be assessed in preoperative biopsies of rectal cancer with good reproducibility. High PDC grade in a pretreatment tumour is significantly associated with a poor response to therapy. Hence, we suggest that PDC grading might be used as a significant predictive and prognostic factor in patients with locally advanced rectal cancer who are treated with neoadjuvant CRT, and to identify high-risk patients who need surgery and adjuvant chemotherapy.


Asunto(s)
Adenocarcinoma/patología , Adenocarcinoma/terapia , Clasificación del Tumor/métodos , Neoplasias del Recto/patología , Neoplasias del Recto/terapia , Adenocarcinoma/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Quimioradioterapia Adyuvante , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante , Pronóstico , Neoplasias del Recto/mortalidad , Estudios Retrospectivos , Resultado del Tratamiento
2.
PLoS Genet ; 10(9): e1004605, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25210889

RESUMEN

Proteins of the nuclear envelope (NE) are associated with a range of inherited disorders, most commonly involving muscular dystrophy and cardiomyopathy, as exemplified by Emery-Dreifuss muscular dystrophy (EDMD). EDMD is both genetically and phenotypically variable, and some evidence of modifier genes has been reported. Six genes have so far been linked to EDMD, four encoding proteins associated with the LINC complex that connects the nucleus to the cytoskeleton. However, 50% of patients have no identifiable mutations in these genes. Using a candidate approach, we have identified putative disease-causing variants in the SUN1 and SUN2 genes, also encoding LINC complex components, in patients with EDMD and related myopathies. Our data also suggest that SUN1 and SUN2 can act as disease modifier genes in individuals with co-segregating mutations in other EDMD genes. Five SUN1/SUN2 variants examined impaired rearward nuclear repositioning in fibroblasts, confirming defective LINC complex function in nuclear-cytoskeletal coupling. Furthermore, myotubes from a patient carrying compound heterozygous SUN1 mutations displayed gross defects in myonuclear organization. This was accompanied by loss of recruitment of centrosomal marker, pericentrin, to the NE and impaired microtubule nucleation at the NE, events that are required for correct myonuclear arrangement. These defects were recapitulated in C2C12 myotubes expressing exogenous SUN1 variants, demonstrating a direct link between SUN1 mutation and impairment of nuclear-microtubule coupling and myonuclear positioning. Our findings strongly support an important role for SUN1 and SUN2 in muscle disease pathogenesis and support the hypothesis that defects in the LINC complex contribute to disease pathology through disruption of nuclear-microtubule association, resulting in defective myonuclear positioning.


Asunto(s)
Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Proteínas Nucleares/genética , Animales , Núcleo Celular/genética , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Distrofias Musculares/metabolismo , Mutación/genética , Mioblastos/metabolismo , Mioblastos/patología , Células 3T3 NIH , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Proteínas Nucleares/metabolismo
3.
J Cell Sci ; 127(Pt 1): 147-57, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24155329

RESUMEN

The dynamic organisation of the cell nucleus is profoundly modified during growth, development and senescence as a result of changes in chromatin arrangement and gene transcription. A plethora of data suggests that the nuclear lamina is a key player in chromatin dynamics and argues in favour of a major involvement of prelamin A in fundamental mechanisms regulating cellular senescence and organism ageing. As the best model to analyse the role of prelamin A in normal ageing, we used cells from centenarian subjects. We show that prelamin A is accumulated in fibroblasts from centenarians owing to downregulation of its specific endoprotease ZMPSTE24, whereas other nuclear envelope constituents are mostly unaffected and cells do not enter senescence. Accumulation of prelamin A in nuclei of cells from centenarians elicits loss of heterochromatin, as well as recruitment of the inactive form of 53BP1, associated with rapid response to oxidative stress. These effects, including the prelamin-A-mediated increase of nuclear 53BP1, can be reproduced by rapamycin treatment of cells from younger individuals. These data identify prelamin A and 53BP1 as new targets of rapamycin that are associated with human longevity. We propose that the reported mechanisms safeguard healthy ageing in humans through adaptation of the nuclear environment to stress stimuli.


Asunto(s)
Envejecimiento/genética , Antibióticos Antineoplásicos/farmacología , Fibroblastos/efectos de los fármacos , Longevidad/genética , Proteínas Nucleares/genética , Precursores de Proteínas/genética , Sirolimus/farmacología , Anciano de 80 o más Años , Envejecimiento/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Cromatina/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/agonistas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lamina Tipo A , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/antagonistas & inhibidores , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Proteínas Nucleares/agonistas , Proteínas Nucleares/metabolismo , Estrés Oxidativo , Precursores de Proteínas/agonistas , Precursores de Proteínas/metabolismo , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53
4.
Biochim Biophys Acta ; 1832(3): 411-20, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23261988

RESUMEN

Adult-onset autosomal dominant leukodystrophy (ADLD) is a slowly progressive neurological disorder characterised by pyramidal, cerebellar, and autonomic disturbances. Duplication of the LMNB1 gene is the genetic cause of ADLD, yet the pathogenetic mechanism is not defined. In this study, we analysed cells and muscle tissue from three patients affected by ADLD, carrying an extra copy of the LMNB1 gene. Lamin B1 levels were dramatically increased in ADLD nuclei, both in skin fibroblasts and skeletal muscle fibres. Since lamin B1 is known to bind Oct-1, a transcription factor involved in the oxidative stress pathway, we investigated Oct-1 fate in ADLD. Oct-1 recruitment to the nuclear periphery was increased in ADLD cells, while nucleoplasmic localisation of the transcription factor under oxidative stress conditions was reduced. Importantly, lamin B1 degradation occurring in some, but not all ADLD cell lines, slowed down lamin B1 and Oct-1 accumulation. In skeletal muscle, focal disorganisation of sarcomeres was observed, while IIB-myosin heavy chain, an Oct-1 target gene, was under-expressed and rod-containing fibres were formed. These data show that a high degree of regulation of lamin B1 expression is implicated in the different clinical phenotypes observed in ADLD and show that altered Oct-1 nuclear localisation contributes to the disease phenotype.


Asunto(s)
Lamina Tipo B/metabolismo , Membrana Nuclear/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Western Blotting , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Duplicación de Gen , Humanos , Lamina Tipo B/genética , Masculino , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Membrana Nuclear/ultraestructura , Enfermedad de Pelizaeus-Merzbacher/genética
5.
Cells ; 13(2)2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38247853

RESUMEN

In muscle cells subjected to mechanical stimulation, LINC complex and cytoskeletal proteins are basic to preserve cellular architecture and maintain nuclei orientation and positioning. In this context, the role of lamin A/C remains mostly elusive. This study demonstrates that in human myoblasts subjected to mechanical stretching, lamin A/C recruits desmin and plectin to the nuclear periphery, allowing a proper spatial orientation of the nuclei. Interestingly, in Emery-Dreifuss Muscular Dystrophy (EDMD2) myoblasts exposed to mechanical stretching, the recruitment of desmin and plectin to the nucleus and nuclear orientation were impaired, suggesting that a functional lamin A/C is crucial for the response to mechanical strain. While describing a new mechanism of action headed by lamin A/C, these findings show a structural alteration that could be involved in the onset of the muscle defects observed in muscular laminopathies.


Asunto(s)
Desmina , Lamina Tipo A , Distrofia Muscular de Emery-Dreifuss , Plectina , Humanos , Desmina/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Mioblastos , Plectina/metabolismo
6.
Front Plant Sci ; 15: 1401669, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077508

RESUMEN

Agroclimatic variables may affect insect and plant phenology, with unpredictable effects on pest populations and crop losses. Bactrocera oleae Rossi (Diptera: Tephritidae) is a specific pest of Olea europaea plants that can cause annual economic losses of more than one billion US dollars in the Mediterranean region. In this study, we aimed at understanding the effect of olive tree phenology and other agroclimatic variables on B. oleae infestation dynamics in the Umbria region (Central Italy). Analyses were carried out on B. oleae infestation data collected in 79 olive groves during a 7-year period (from 2015 to 2021). In July-August, B. oleae infestation (1% attack) was negatively affected by altitude and spring mean daily temperatures and positively by higher winter mean daily temperatures and olive tree cumulative degree days. In September-October, infestation was negatively affected by a positive soil water balance and high spring temperatures. High altitude and cumulative plant degree days were related to delayed attacks. In contrast, high winter and spring temperatures accelerated them. Our results could be helpful for the development of predictive models and for increasing the reliability of decision support systems currently used in olive orchards.

7.
Cells ; 12(22)2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37998321

RESUMEN

Type-2 Familial Partial Lipodystrophy (FPLD2), a rare lipodystrophy caused by LMNA mutations, is characterized by a loss of subcutaneous fat from the trunk and limbs and excess accumulation of adipose tissue in the neck and face. Several studies have reported that the mineralocorticoid receptor (MR) plays an essential role in adipose tissue differentiation and functionality. We previously showed that brown preadipocytes isolated from a FPLD2 patient's neck aberrantly differentiate towards the white lineage. As this condition may be related to MR activation, we suspected altered MR dynamics in FPLD2. Despite cytoplasmic MR localization in control brown adipocytes, retention of MR was observed in FPLD2 brown adipocyte nuclei. Moreover, overexpression of wild-type or mutated prelamin A caused GFP-MR recruitment to the nuclear envelope in HEK293 cells, while drug-induced prelamin A co-localized with endogenous MR in human preadipocytes. Based on in silico analysis and in situ protein ligation assays, we could suggest an interaction between prelamin A and MR, which appears to be inhibited by mineralocorticoid receptor antagonism. Importantly, the MR antagonist spironolactone redirected FPLD2 preadipocyte differentiation towards the brown lineage, avoiding the formation of enlarged and dysmorphic lipid droplets. Finally, beneficial effects on brown adipose tissue activity were observed in an FPLD2 patient undergoing spironolactone treatment. These findings identify MR as a new lamin A interactor and a new player in lamin A-linked lipodystrophies.


Asunto(s)
Lipodistrofia Parcial Familiar , Humanos , Adipocitos Marrones/metabolismo , Lamina Tipo A/metabolismo , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacología , Receptores de Mineralocorticoides/metabolismo , Células HEK293 , Tejido Adiposo Pardo/metabolismo
8.
Bone Rep ; 19: 101728, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076483

RESUMEN

COL2A1 gene encodes the alpha-1 chain of type-II procollagen. Heterozygous pathogenic variants are associated with the broad clinical spectrum of genetic diseases known as type-II collagenopathies. We aimed to characterize the NM_001844.5:c.1330G>A;p.Gly444Ser variant detected in the COL2A1 gene through trio-based prenatal exome sequencing in a fetus presenting a severe skeletal phenotype at 31 Gestational Weeks and in his previously undisclosed mild-affected father. Functional studies on father's cutaneous fibroblasts, along with in silico protein modeling and in vitro chondrocytes differentiation, showed intracellular accumulation of collagen-II, its localization in external Golgi vesicles and nuclear morphological alterations. Extracellular matrix showed a disorganized fibronectin network. These results showed that p.Gly444Ser variant alters procollagen molecules processing and the assembly of mature type-II collagen fibrils, according to COL2A1-chain disorganization, displayed by protein modeling. Clinical assessment at 38 y.o., through a reverse-phenotyping approach, revealed limp gait, short and stocky appearance. X-Ray and MRI showed pelvis asymmetry with severe morpho-structural alterations of the femoral heads bilaterally, consistent with a mild form of type-II collagenopathy. This study shows how the fusion of genomics and clinical expertise can drive a diagnosis supported by cellular and bioinformatics studies to effectively establish variants pathogenicity.

9.
Biochim Biophys Acta ; 1812(7): 711-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21419220

RESUMEN

Mandibuloacral dysplasia type A (MADA) is a rare disease caused by mutations in the LMNA gene encoding A type lamins. Patients affected by mandibuloacral dysplasia type A suffer from partial lipodystrophy, skin abnormalities and accelerated aging. Typical of mandibuloacral dysplasia type A is also bone resorption at defined districts including terminal phalanges, mandible and clavicles. Little is known about the biological mechanism underlying osteolysis in mandibuloacral dysplasia type A. In the reported study, we analyzed an osteoblast primary culture derived from the cervical vertebrae of a mandibuloacral dysplasia type A patient bearing the homozygous R527H LMNA mutation. Mandibuloacral dysplasia type A osteoblasts showed nuclear abnormalities typical of laminopathic cells, but they proliferated in culture and underwent differentiation upon stimulation with dexamethasone and beta-glycerophosphate. Differentiated osteoblasts showed proper production of bone mineral matrix until passage 8 in culture, suggesting a good differentiation activity. In order to evaluate whether mandibuloacral dysplasia type A osteoblast-derived factors affected osteoclast differentiation or activity, we used a conditioned medium from mandibuloacral dysplasia type A or control cultures to treat normal human peripheral blood monocytes and investigated whether they were induced to differentiate into osteoclasts. A higher osteoclast differentiation and matrix digestion rate was obtained in the presence of mandibuloacral dysplasia type A osteoblast medium with respect to normal osteoblast medium. Further, TGFbeta 2 and osteoprotegerin expression were enhanced in mandibuloacral dysplasia type A osteoblasts while the RANKL/osteoprotegerin ratio was diminished. Importantly, inhibition of TGFbeta 2 by a neutralizing antibody abolished the effect of mandibuloacral dysplasia type A conditioned medium on osteoclast differentiation. These data argue in favor of an altered bone turnover in mandibuloacral dysplasia type A, caused by upregulation of bone-derived stimulatory cytokines, which activate non-canonical differentiation stimuli. In this context, TGFbeta 2 appears as a major player in the osteolytic process that affects mandibuloacral dysplasia type A patients.


Asunto(s)
Acroosteólisis/patología , Diferenciación Celular , Osteoblastos/patología , Osteoclastos/patología , Acroosteólisis/sangre , Fosfatasa Alcalina/metabolismo , Secuencia de Bases , Western Blotting , Células Cultivadas , Cartilla de ADN , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Humanos , Microscopía Electrónica
10.
Front Cell Dev Biol ; 10: 1018102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467410

RESUMEN

Lamin A is a main constituent of the nuclear lamina and contributes to nuclear shaping, mechano-signaling transduction and gene regulation, thus affecting major cellular processes such as cell cycle progression and entry into senescence, cellular differentiation and stress response. The role of lamin A in stress response is particularly intriguing, yet not fully elucidated, and involves prelamin A post-translational processing. Here, we propose prelamin A as the tool that allows lamin A plasticity during oxidative stress response and permits timely 53BP1 recruitment to DNA damage foci. We show that while PCNA ubiquitination, p21 decrease and H2AX phosphorylation occur soon after stress induction in the absence of prelamin A, accumulation of non-farnesylated prelamin A follows and triggers recruitment of 53BP1 to lamin A/C complexes. Then, the following prelamin A processing steps causing transient accumulation of farnesylated prelamin A and maturation to lamin A reduce lamin A affinity for 53BP1 and favor its release and localization to DNA damage sites. Consistent with these observations, accumulation of prelamin A forms in cells under basal conditions impairs histone H2AX phosphorylation, PCNA ubiquitination and p21 degradation, thus affecting the early stages of stress response. As a whole, our results are consistent with a physiological function of prelamin A modulation during stress response aimed at timely recruitment/release of 53BP1 and other molecules required for DNA damage repair. In this context, it becomes more obvious how farnesylated prelamin A accumulation to toxic levels alters timing of DNA damage signaling and 53BP1 recruitment, thus contributing to cellular senescence and accelerated organismal aging as observed in progeroid laminopathies.

11.
J Neuromuscul Dis ; 9(3): 457-462, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35466949

RESUMEN

BACKGROUND: Proximal muscle weakness may be the presenting clinical feature of different types of myopathies, including limb girdle muscular dystrophy and primary mitochondrial myopathy. LGMD1B is caused by LMNA mutation. It is characterized by progressive weakness and wasting leading to proximal weakness, cardiomyopathy, and hearth conduction block. OBJECTIVE: In this article, we describe the case of a patient who presented with limb-girdle weakness and a double trouble scenario -mitochondrial DNA single deletion and a new LMNA mutation. METHODS: Pathophysiological aspects were investigated with muscle biopsy, Western Blot analysis, NGS nuclear and mtDNA analysis and neuromuscular imaging (muscle and cardiac MRI). RESULTS: Although secondary mitochondrial involvement is possible, a "double trouble" syndrome can not be excluded. CONCLUSION: Implication deriving from hypothetical coexistence of two different pathological conditions or the possible secondary mitochondrial involvement are discussed.


Asunto(s)
Distrofia Muscular de Cinturas , Distrofias Musculares , ADN Mitocondrial/genética , Humanos , Lamina Tipo A/genética , Debilidad Muscular/complicaciones , Distrofias Musculares/genética , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/genética , Mutación
12.
Aging Cell ; 20(1): e13285, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33393189

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) causes premature aging in children, with adipose tissue, skin and bone deterioration, and cardiovascular impairment. In HGPS cells and mouse models, high levels of interleukin-6, an inflammatory cytokine linked to aging processes, have been detected. Here, we show that inhibition of interleukin-6 activity by tocilizumab, a neutralizing antibody raised against interleukin-6 receptors, counteracts progeroid features in both HGPS fibroblasts and LmnaG609G/G609G progeroid mice. Tocilizumab treatment limits the accumulation of progerin, the toxic protein produced in HGPS cells, rescues nuclear envelope and chromatin abnormalities, and attenuates the hyperactivated DNA damage response. In vivo administration of tocilizumab reduces aortic lesions and adipose tissue dystrophy, delays the onset of lipodystrophy and kyphosis, avoids motor impairment, and preserves a good quality of life in progeroid mice. This work identifies tocilizumab as a valuable tool in HGPS therapy and, speculatively, in the treatment of a variety of aging-related disorders.


Asunto(s)
Interleucina-6/metabolismo , Progeria/genética , Envejecimiento , Animales , Humanos , Ratones , Progeria/patología
13.
Biol Cell ; 101(9): 541-54, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19323649

RESUMEN

BACKGROUND INFORMATION: Emerin is a nuclear envelope protein that contributes to nuclear architecture, chromatin structure, and gene expression through its interaction with various nuclear proteins. In particular, emerin is molecularly connected with the nuclear lamina, a protein meshwork composed of lamins and lamin-binding proteins underlying the inner nuclear membrane. Among nuclear lamina components, lamin A is a major emerin partner. Lamin A, encoded by the LMNA gene (lamin A/C gene), is produced as a precursor protein (prelamin A) that is post-transcriptionally modified at its C-terminal region where the CaaX motif triggers a sequence of modifications, including farnesylation, carboxymethylation, and proteolytic cleavage by ZMPSTE 24 (zinc metalloproteinase Ste24) metalloproteinase. Impairment of the lamin A maturation pathway causing lamin A precursor accumulation is linked to the development of rare diseases such as familial partial lipodystrophy, MADA (mandibuloacral dysplasia), the Werner syndrome, Hutchinson-Gilford progeria syndrome and RD (restrictive dermopathy). RESULTS: In the present study, we show that emerin and different prelamin A forms influence each other's localization. We show that the accumulation of non-farnesylated as well as farnesylated carboxymethylated lamin A precursors in human fibroblasts modifies emerin localization. On the contrary, emerin absence at the inner nuclear membrane leads to unprocessed (non-farnesylated) prelamin A aberrant localization only. Moreover, we observe that the restoration of emerin expression in emerin-null cells induces the recovery of non-farnesylated prelamin A localization. CONCLUSION: These results indicate that emerin-prelamin A interplay influences nuclear organization. This finding may be relevant to the understanding of laminopathies.


Asunto(s)
Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Línea Celular , Células Cultivadas , Humanos , Lamina Tipo A , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Unión Proteica , Precursores de Proteínas/genética , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
14.
Cells ; 9(7)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698523

RESUMEN

Lamin A/C has been implicated in the epigenetic regulation of muscle gene expression through dynamic interaction with chromatin domains and epigenetic enzymes. We previously showed that lamin A/C interacts with histone deacetylase 2 (HDAC2). In this study, we deepened the relevance and regulation of lamin A/C-HDAC2 interaction in human muscle cells. We present evidence that HDAC2 binding to lamina A/C is related to HDAC2 acetylation on lysine 75 and expression of p300-CBP associated factor (PCAF), an acetyltransferase known to acetylate HDAC2. Our findings show that lamin A and farnesylated prelamin A promote PCAF recruitment to the nuclear lamina and lamin A/C binding in human myoblasts committed to myogenic differentiation, while protein interaction is decreased in differentiating myotubes. Interestingly, PCAF translocation to the nuclear envelope, as well as lamin A/C-PCAF interaction, are reduced by transient expression of lamin A mutated forms causing Emery Dreifuss muscular dystrophy. Consistent with this observation, lamin A/C interaction with both PCAF and HDAC2 is significantly reduced in Emery-Dreifuss muscular dystrophy myoblasts. Overall, these results support the view that, by recruiting PCAF and HDAC2 in a molecular platform, lamin A/C might contribute to regulate their epigenetic activity required in the early phase of muscle differentiation.


Asunto(s)
Diferenciación Celular , Histona Desacetilasa 2/metabolismo , Lamina Tipo A/metabolismo , Músculos/citología , Factores de Transcripción p300-CBP/metabolismo , Animales , Células HEK293 , Humanos , Lamina Tipo A/genética , Ratones , Modelos Biológicos , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patología , Mutación/genética , Lámina Nuclear/metabolismo , Fenotipo , Unión Proteica
15.
Cells ; 9(6)2020 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-32517247

RESUMEN

Reactive Oxygen Species (ROS) are reactive molecules required for the maintenance of physiological functions. Oxidative stress arises when ROS production exceeds the cellular ability to eliminate such molecules. In this study, we showed that oxidative stress induces post-translational modification of the inner nuclear membrane protein emerin. In particular, emerin is phosphorylated at the early stages of the oxidative stress response, while protein phosphorylation is abolished upon recovery from stress. A finely tuned balance between emerin phosphorylation and O-GlcNAcylation seems to govern this dynamic and modulates emerin-BAF interaction and BAF nucleoplasmic localization during the oxidative stress response. Interestingly, emerin post-translational modifications, similar to those observed during the stress response, are detected in cells bearing LMNA gene mutations and are characterized by a free radical generating environment. On the other hand, under oxidative stress conditions, a delay in DNA damage repair and cell cycle progression is found in cells from Emery-Dreifuss Muscular Dystrophy type 1, which do not express emerin. These results suggest a role of the emerin-BAF protein platform in the DNA damage response aimed at counteracting the detrimental effects of elevated levels of ROS.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Lamina Tipo A/deficiencia , Lamina Tipo A/metabolismo , Peso Molecular , Distrofia Muscular de Emery-Dreifuss/patología , Fosforilación , Unión Proteica , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo
16.
Ageing Res Rev ; 62: 101073, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32446955

RESUMEN

Lamin A, a main constituent of the nuclear lamina, is the major splicing product of the LMNA gene, which also encodes lamin C, lamin A delta 10 and lamin C2. Involvement of lamin A in the ageing process became clear after the discovery that a group of progeroid syndromes, currently referred to as progeroid laminopathies, are caused by mutations in LMNA gene. Progeroid laminopathies include Hutchinson-Gilford Progeria, Mandibuloacral Dysplasia, Atypical Progeria and atypical-Werner syndrome, disabling and life-threatening diseases with accelerated ageing, bone resorption, lipodystrophy, skin abnormalities and cardiovascular disorders. Defects in lamin A post-translational maturation occur in progeroid syndromes and accumulated prelamin A affects ageing-related processes, such as mTOR signaling, epigenetic modifications, stress response, inflammation, microRNA activation and mechanosignaling. In this review, we briefly describe the role of these pathways in physiological ageing and go in deep into lamin A-dependent mechanisms that accelerate the ageing process. Finally, we propose that lamin A acts as a sensor of cell intrinsic and environmental stress through transient prelamin A accumulation, which triggers stress response mechanisms. Exacerbation of lamin A sensor activity due to stably elevated prelamin A levels contributes to the onset of a permanent stress response condition, which triggers accelerated ageing.


Asunto(s)
Envejecimiento , Envejecimiento/genética , Humanos , Lamina Tipo A/genética , MicroARNs , Mutación , Proteínas Nucleares , Progeria/genética , Precursores de Proteínas/genética
17.
Cells ; 9(3)2020 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32235738

RESUMEN

A type lamins are fundamental components of the nuclear lamina. Changes in lamin A expression correlate with malignant transformation in several cancers. However, the role of lamin A has not been explored in osteosarcoma (OS). Here, we wanted to investigate the role of lamin A in normal osteoblasts (OBs) and OS cells. Thus, we studied the expression of lamin A/C in OS cells compared to OBs and evaluated the effects of lamin A overexpression in OS cell lines. We show that, while lamin A expression increases during osteoblast differentiation, all examined OS cell lines express lower lamin A levels relative to differentiated OBs. The condition of low LMNA expression confers to OS cells a significant increase in migration potential, while overexpression of lamin A reduces migration ability of OS cells. Moreover, overexpression of unprocessable prelamin A also reduces cell migration. In agreement with the latter finding, OS cells which accumulate the highest prelamin A levels upon inhibition of lamin A maturation by statins, had significantly reduced migration ability. Importantly, OS cells subjected to statin treatment underwent apoptotic cell death in a RAS-independent, lamin A-dependent manner. Our results show that pro-apoptotic effects of statins and statin inhibitory effect on OS cell migration are comparable to those obtained by prelamin A accumulation and further suggest that modulation of lamin A expression and post-translational processing can be a tool to decrease migration potential in OS cells.


Asunto(s)
Movimiento Celular , Lamina Tipo A/metabolismo , Osteosarcoma/metabolismo , Osteosarcoma/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Lovastatina/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/patología
18.
Exp Cell Res ; 314(20): 3628-37, 2008 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-18951892

RESUMEN

Lamin A is a nuclear lamina constituent implicated in a number of human disorders including Emery-Dreifuss muscular dystrophy. Since increasing evidence suggests a role of the lamin A precursor in nuclear functions, we investigated the processing of prelamin A during differentiation of C2C12 mouse myoblasts. We show that both protein levels and cellular localization of prelamin A are modulated during myoblast activation. Similar changes of lamin A-binding proteins emerin and LAP2alpha were observed. Furthermore, prelamin A was found in a complex with LAP2alpha in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affected LAP2alpha and PCNA amount and increased caveolin 3 mRNA and protein levels, while accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor appeared to inhibit caveolin 3 expression. Our data provide evidence for a critical role of the lamin A precursor in the early steps of muscle cell differentiation.


Asunto(s)
Diferenciación Celular/genética , Desarrollo de Músculos/genética , Proteínas Nucleares/fisiología , Precursores de Proteínas/fisiología , Animales , Caveolina 3/genética , Caveolina 3/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Lamina Tipo A , Proteínas de la Membrana/metabolismo , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Mioblastos/metabolismo , Mioblastos/fisiología , Proteínas Nucleares/metabolismo , Unión Proteica , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Factores de Tiempo
19.
Front Cell Dev Biol ; 7: 6, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30766871

RESUMEN

We recently identified lamin A/C as a docking molecule for human histone deacetylase 2 (HDAC2) and showed involvement of HDAC2-lamin A/C complexes in the DNA damage response. We further showed that lamin A/C-HDAC2 interaction is altered in Hutchinson-Gilford Progeria syndrome and other progeroid laminopathies. Here, we show that both inhibitors of lamin A maturation and small molecules inhibiting HDAC activity affect lamin A/C interaction with HDAC2. While statins, which inhibit prelamin A processing, reduce protein interaction, HDAC inhibitors strengthen protein binding. Moreover, treatment with HDAC inhibitors restored the enfeebled lamin A/C-HDAC2 interaction observed in HGPS cells. Based on these results, we propose that prelamin A levels as well as HDAC2 activation status might influence the extent of HDAC2 recruitment to the lamin A/C-containing platform and contribute to modulate HDAC2 activity. Our study links prelamin A processing to HDAC2 regulation and provides new insights into the effect of statins and histone deacetylase inhibitors on lamin A/C functionality in normal and progeroid cells.

20.
Exp Mol Med ; 51(8): 1-17, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375660

RESUMEN

Type-2 Familial Partial Lipodystrophy is caused by LMNA mutations. Patients gradually lose subcutaneous fat from the limbs, while they accumulate adipose tissue in the face and neck. Several studies have demonstrated that autophagy is involved in the regulation of adipocyte differentiation and the maintenance of the balance between white and brown adipose tissue. We identified deregulation of autophagy in laminopathic preadipocytes before induction of differentiation. Moreover, in differentiating white adipocyte precursors, we observed impairment of large lipid droplet formation, altered regulation of adipose tissue genes, and expression of the brown adipose tissue marker UCP1. Conversely, in lipodystrophic brown adipocyte precursors induced to differentiate, we noticed activation of autophagy, formation of enlarged lipid droplets typical of white adipocytes, and dysregulation of brown adipose tissue genes. In agreement with these in vitro results indicating conversion of FPLD2 brown preadipocytes toward the white lineage, adipose tissue from FPLD2 patient neck, an area of brown adipogenesis, showed a white phenotype reminiscent of its brown origin. Moreover, in vivo morpho-functional evaluation of fat depots in the neck area of three FPLD2 patients by PET/CT analysis with cold stimulation showed the absence of brown adipose tissue activity. These findings highlight a new pathogenetic mechanism leading to improper fat distribution in lamin A-linked lipodystrophies and show that both impaired white adipocyte turnover and failure of adipose tissue browning contribute to disease.


Asunto(s)
Adipocitos Marrones/fisiología , Adipocitos/patología , Autofagia/fisiología , Diferenciación Celular , Transdiferenciación Celular , Lipodistrofia Parcial Familiar/patología , Adipocitos/fisiología , Adipogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/fisiología , Adulto , Transdiferenciación Celular/fisiología , Células Cultivadas , Femenino , Humanos , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/fisiopatología , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA