Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Sci Rep ; 11(1): 17793, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493744

RESUMEN

The rapid identification and isolation of infected individuals remains a key strategy for controlling the spread of SARS-CoV-2. Frequent testing of populations to detect infection early in asymptomatic or presymptomatic individuals can be a powerful tool for intercepting transmission, especially when the viral prevalence is low. However, RT-PCR testing-the gold standard of SARS-CoV-2 diagnosis-is expensive, making regular testing of every individual unfeasible. Sample pooling is one approach to lowering costs. By combining samples and testing them in groups the number of tests required is reduced, substantially lowering costs. Here we report on the implementation of pooling strategies using 3-d and 4-d hypercubes to test a professional sports team in South Africa. We have shown that infected samples can be reliably detected in groups of 27 and 81, with minimal loss of assay sensitivity for samples with individual Ct values of up to 32. We report on the automation of sample pooling, using a liquid-handling robot and an automated web interface to identify positive samples. We conclude that hypercube pooling allows for the reliable RT-PCR detection of SARS-CoV-2 infection, at significantly lower costs than lateral flow antigen (LFA) tests.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Ensayos Analíticos de Alto Rendimiento/métodos , SARS-CoV-2/aislamiento & purificación , Manejo de Especímenes/métodos , Antígenos Virales/aislamiento & purificación , Atletas , COVID-19/sangre , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19/economía , Prueba Serológica para COVID-19/economía , Prueba Serológica para COVID-19/métodos , Ahorro de Costo , Ensayos Analíticos de Alto Rendimiento/economía , Humanos , ARN Viral/aislamiento & purificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Sudáfrica , Manejo de Especímenes/economía , Medicina Deportiva/economía , Medicina Deportiva/métodos
2.
Genes (Basel) ; 11(8)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824573

RESUMEN

The COVID-19 pandemic has spread very fast around the world. A few days after the first detected case in South Africa, an infection started in a large hospital outbreak in Durban, KwaZulu-Natal (KZN). Phylogenetic analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes can be used to trace the path of transmission within a hospital. It can also identify the source of the outbreak and provide lessons to improve infection prevention and control strategies. This manuscript outlines the obstacles encountered in order to genotype SARS-CoV-2 in near-real time during an urgent outbreak investigation. This included problems with the length of the original genotyping protocol, unavailability of reagents, and sample degradation and storage. Despite this, three different library preparation methods for Illumina sequencing were set up, and the hands-on library preparation time was decreased from twelve to three hours, which enabled the outbreak investigation to be completed in just a few weeks. Furthermore, the new protocols increased the success rate of sequencing whole viral genomes. A simple bioinformatics workflow for the assembly of high-quality genomes in near-real time was also fine-tuned. In order to allow other laboratories to learn from our experience, all of the library preparation and bioinformatics protocols are publicly available at protocols.io and distributed to other laboratories of the Network for Genomics Surveillance in South Africa (NGS-SA) consortium.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/diagnóstico , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Diagnóstico Molecular/métodos , Neumonía Viral/diagnóstico , Secuenciación Completa del Genoma/métodos , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/virología , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Técnicas de Diagnóstico Molecular/normas , Pandemias , Neumonía Viral/virología , Reproducibilidad de los Resultados , SARS-CoV-2 , Sensibilidad y Especificidad , Secuenciación Completa del Genoma/normas
3.
Cell Stress Chaperones ; 22(2): 213-223, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27987076

RESUMEN

The Hsp70/Hsp90 organising protein (HOP) is a co-chaperone essential for client protein transfer from Hsp70 to Hsp90 within the Hsp90 chaperone machine. Although HOP is upregulated in various cancers, there is limited information from in vitro studies on how HOP expression is regulated in cancer. The main objective of this study was to identify the HOP promoter and investigate its activity in cancerous cells. Bioinformatic analysis of the -2500 to +16 bp region of the HOP gene identified a large CpG island and a range of putative cis-elements. Many of the cis-elements were potentially bound by transcription factors which are activated by oncogenic pathways. Luciferase reporter assays demonstrated that the upstream region of the HOP gene contains an active promoter in vitro. Truncation of this region suggested that the core HOP promoter region was -855 to +16 bp. HOP promoter activity was highest in Hs578T, HEK293T and SV40- transformed MEF1 cell lines which expressed mutant or inactive p53. In a mutant p53 background, expression of wild-type p53 led to a reduction in promoter activity, while inhibition of wild-type p53 in HeLa cells increased HOP promoter activity. Additionally, in Hs578T and HEK293T cell lines containing inactive p53, expression of HRAS increased HOP promoter activity. However, HRAS activation of the HOP promoter was inhibited by p53 overexpression. These findings suggest for the first time that HOP expression in cancer may be regulated by both RAS activation and p53 inhibition. Taken together, these data suggest that HOP may be part of the cancer gene signature induced by a combination of mutant p53 and mutated RAS that is associated with cellular transformation.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/metabolismo , Animales , Línea Celular , Islas de CpG , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Ratones , Neoplasias/genética , Neoplasias/patología , Plásmidos/genética , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Elementos Reguladores de la Transcripción , Proteína p53 Supresora de Tumor/genética , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA