RESUMEN
Background Impaired glucose metabolism is characteristic of several types of dementia, preceding cognitive symptoms and structural brain changes. Reduced glucose uptake in specific brain regions, detected using fluorine 18 (18F) fluorodeoxyglucose (FDG) PET, is a valuable diagnostic marker in Alzheimer disease (AD). However, the use of 18F-FDG PET in clinical practice may be limited by equipment availability and high cost. Purpose To test the feasibility of using MRI-based deuterium (2H) metabolic imaging (DMI) at a clinical magnetic field strength (3 T) to detect and localize changes in the concentration of glucose and its metabolites in the brains of patients with a clinical diagnosis of AD. Materials and Methods Participants were recruited for this prospective case-control pilot study between March 2021 and February 2023. DMI was performed at 3 T using a custom birdcage head coil following oral administration of deuterium-labeled glucose (0.75 g/kg). Unlocalized whole-brain MR spectroscopy (MRS) and three-dimensional MR spectroscopic imaging (MRSI) (voxel size, 3.2 cm cubic) were performed. Ratios of 2H-glucose, 2H-glutamate and 2H-glutamine (2H-Glx), and 2H-lactate spectroscopic peak signals to 2H-water peak signal were calculated for the whole-brain MR spectra and for individual MRSI voxels. Results A total of 19 participants, including 10 participants with AD (mean age, 68 years ± 5 [SD]; eight males) and nine cognitively healthy control participants (mean age, 70 years ± 6; six males) were evaluated. Whole-brain spectra demonstrated a reduced ratio of 2H-Glx to 2H-glucose peak signals in participants with AD compared with control participants (0.41 ± 0.09 vs 0.58 ± 0.20, respectively; P = .04), suggesting an impairment of oxidative glucose metabolism in AD. However, there was no evidence of localization of these changes to the expected regions of metabolic impairment at MRSI, presumably due to insufficient spatial resolution. Conclusion DMI at 3 T demonstrated impairment of oxidative glucose metabolism in the brains of patients with AD but no evidence of regional signal differences. © RSNA, 2024 Supplemental material is available for this article.
Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Deuterio , Imagen por Resonancia Magnética , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Proyectos Piloto , Masculino , Femenino , Estudios de Casos y Controles , Anciano , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Glucosa/metabolismo , Persona de Mediana Edad , Estudios de Factibilidad , Anciano de 80 o más AñosRESUMEN
Hyperpolarized carbon-13 (13C) magnetic resonance imaging (MRI) has shown promise for non-invasive assessment of the cerebral metabolism of [1-13C]pyruvate in both healthy volunteers and patients. The exchange of pyruvate to lactate catalysed by lactate dehydrogenase (LDH) and that of pyruvate flux to bicarbonate through pyruvate dehydrogenase (PDH) are the most widely studied reactions in vivo. Here we show the potential of the technique to probe additional enzymatic activity within the brain. Approximately 50 s after intravenous injection of hyperpolarized pyruvate, high-flip-angle pulses were used to detect cerebral 13C-labelled carbon dioxide (13CO2), in addition to the 13C-bicarbonate (H13CO3 -) subsequently formed by carbonic anhydrase (CA). Brain pH measurements, which were weighted towards the extracellular compartment, were calculated from the ratio of H13CO3 - to 13CO2 in seven volunteers using the Henderson-Hasselbalch equation, demonstrating an average pH ± SD of 7.40 ± 0.02, with inter-observer reproducibility of 0.04. In addition, hyperpolarized [1-13C]aspartate was also detected, demonstrating irreversible pyruvate carboxylation to oxaloacetate by pyruvate carboxylase (PC) and subsequent transamination by aspartate aminotransferase (AST), with the average flux being on average 11% ± 3% of that through PDH. A hyperpolarized [1-13C]alanine signal was also detected, but this was localized to extracranial muscle tissue in keeping with skeletal alanine aminotransferase (ALT) activity. The results demonstrate the potential of hyperpolarized 13C-MRI to assess cerebral and extracerebral [1-13C]pyruvate metabolism in addition to LDH and PDH activity. Non-invasive measurements of brain pH could be particularly important in assessing cerebral pathology given the wide range of disease processes that alter acid-base balance.
RESUMEN
Glioblastoma is characterized by diffuse infiltration into the surrounding tissue along white matter tracts. Identifying the invisible tumour invasion beyond focal lesion promises more effective treatment, which remains a significant challenge. It is increasingly accepted that glioblastoma could widely affect brain structure and function, and further lead to reorganization of neural connectivity. Quantifying neural connectivity in glioblastoma may provide a valuable tool for identifying tumour invasion. Here we propose an approach to systematically identify tumour invasion by quantifying the structural connectome in glioblastoma patients. We first recruit two independent prospective glioblastoma cohorts: the discovery cohort with 117 patients and validation cohort with 42 patients. Next, we use diffusion MRI of healthy subjects to construct tractography templates indicating white matter connection pathways between brain regions. Next, we construct fractional anisotropy skeletons from diffusion MRI using an improved voxel projection approach based on the tract-based spatial statistics, where the strengths of white matter connection and brain regions are estimated. To quantify the disrupted connectome, we calculate the deviation of the connectome strengths of patients from that of the age-matched healthy controls. We then categorize the disruption into regional disruptions on the basis of the relative location of connectome to focal lesions. We also characterize the topological properties of the patient connectome based on the graph theory. Finally, we investigate the clinical, cognitive and prognostic significance of connectome metrics using Pearson correlation test, mediation test and survival models. Our results show that the connectome disruptions in glioblastoma patients are widespread in the normal-appearing brain beyond focal lesions, associated with lower preoperative performance (P < 0.001), impaired cognitive function (P < 0.001) and worse survival (overall survival: hazard ratio = 1.46, P = 0.049; progression-free survival: hazard ratio = 1.49, P = 0.019). Additionally, these distant disruptions mediate the effect on topological alterations of the connectome (mediation effect: clustering coefficient -0.017, P < 0.001, characteristic path length 0.17, P = 0.008). Further, the preserved connectome in the normal-appearing brain demonstrates evidence of connectivity reorganization, where the increased neural connectivity is associated with better overall survival (log-rank P = 0.005). In conclusion, our connectome approach could reveal and quantify the glioblastoma invasion distant from the focal lesion and invisible on the conventional MRI. The structural disruptions in the normal-appearing brain were associated with the topological alteration of the brain and could indicate treatment target. Our approach promises to aid more accurate patient stratification and more precise treatment planning.
Asunto(s)
Conectoma , Glioblastoma , Sustancia Blanca , Humanos , Conectoma/métodos , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Imagen de Difusión Tensora/métodos , Estudios Prospectivos , Encéfalo/patología , Sustancia Blanca/patologíaRESUMEN
Deuterium metabolic imaging (DMI) and hyperpolarized 13C-pyruvate MRI (13C-HPMRI) are two emerging methods for non-invasive and non-ionizing imaging of tissue metabolism. Imaging cerebral metabolism has potential applications in cancer, neurodegeneration, multiple sclerosis, traumatic brain injury, stroke, and inborn errors of metabolism. Here we directly compare these two non-invasive methods at 3 T for the first time in humans and show how they simultaneously probe both oxidative and non-oxidative metabolism. DMI was undertaken 1-2 h after oral administration of [6,6'-2H2]glucose, and 13C-MRI was performed immediately following intravenous injection of hyperpolarized [1-13C]pyruvate in ten and nine normal volunteers within each arm respectively. DMI was used to generate maps of deuterium-labelled water, glucose, lactate, and glutamate/glutamine (Glx) and the spectral separation demonstrated that DMI is feasible at 3 T. 13C-HPMRI generated maps of hyperpolarized carbon-13 labelled pyruvate, lactate, and bicarbonate. The ratio of 13C-lactate/13C-bicarbonate (mean 3.7 ± 1.2) acquired with 13C-HPMRI was higher than the equivalent 2H-lactate/2H-Glx ratio (mean 0.18 ± 0.09) acquired using DMI. These differences can be explained by the route of administering each probe, the timing of imaging after ingestion or injection, as well as the biological differences in cerebral uptake and cellular physiology between the two molecules. The results demonstrate these two metabolic imaging methods provide different yet complementary readouts of oxidative and reductive metabolism within a clinically feasible timescale. Furthermore, as DMI was undertaken at a clinical field strength within a ten-minute scan time, it demonstrates its potential as a routine clinical tool in the future.
Asunto(s)
Bicarbonatos , Imagen por Resonancia Magnética , Bicarbonatos/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Isótopos de Carbono/metabolismo , Deuterio/metabolismo , Glucosa/metabolismo , Humanos , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética/métodos , Ácido PirúvicoRESUMEN
Magnetic resonance fingerprinting (MRF) is highly promising as a quantitative MRI technique due to its accuracy, robustness, and efficiency. Previous studies have found high repeatability and reproducibility of 2D MRF acquisitions in the brain. Here, we have extended our investigations to 3D MRF acquisitions covering the whole brain using spiral projection k-space trajectories. Our travelling head study acquired test/retest data from the brains of 12 healthy volunteers and 8 MRI systems (3 systems at 3 T and 5 at 1.5 T, all from a single vendor), using a study design not requiring all subjects to be scanned at all sites. The pulse sequence and reconstruction algorithm were the same for all acquisitions. After registration of the MRF-derived PD T1 and T2 maps to an anatomical atlas, coefficients of variation (CVs) were computed to assess test/retest repeatability and inter-site reproducibility in each voxel, while a General Linear Model (GLM) was used to determine the voxel-wise variability between all confounders, which included test/retest, subject, field strength and site. Our analysis demonstrated a high repeatability (CVs 0.7-1.3% for T1, 2.0-7.8% for T2, 1.4-2.5% for normalized PD) and reproducibility (CVs of 2.0-5.8% for T1, 7.4-10.2% for T2, 5.2-9.2% for normalized PD) in gray and white matter. Both repeatability and reproducibility improved when compared to similar experiments using 2D acquisitions. Three-dimensional MRF obtains highly repeatable and reproducible estimations of T1 and T2, supporting the translation of MRF-based fast quantitative imaging into clinical applications.
Asunto(s)
Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Adulto , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Reproducibilidad de los ResultadosRESUMEN
Anatomic connections between the cerebral lateral and third ventricles have been mischaracterized since Monro's original erroneous description of his eponymous foramina (FoMs) as being only one T-shaped passage. Accurate knowledge of the in vivo three-dimensional (3D) configuration of FoM has important clinical neuroendoscopic, neurosurgical, and neuroimaging implications. We retrospectively analyzed volumetric high-resolution brain magnetic resonance imaging of 100 normal individuals to characterize the normal spatial anatomy and morphometry for each FoM. We measured the true anatomical 3D angulations of FoMs relative to standard neuroimaging orthogonal planes, and their minimum width, depth, and distance between the medial borders of bilateral FoMs. The right and left FoMs were separate, distinct, and in a V-shaped configuration. Each FoM was a round, oval, or crescent-shaped canal-like passage with well-defined borders formed by the semicircular concavity of the ipsilateral forniceal column. The plane of FoM was angled on average 56.8° ± 9.1° superiorly from the axial plane, 22.5° ± 10.7° laterally, and 37.0° ± 6.9° anteriorly from the midsagittal plane; all these angles changing significantly with increasing age. The mean narrowest diameter of FoM was 2.8 ± 1.2 mm, and its depth was 2.5 ± 0.2 mm. Thus, the true size and orientation of FoM differs from that depicted on standard neuroimaging. Notably, in young subjects, FoM has a diameter smaller than its depth, a configuration akin to a short, small canal. We propose that the eponym "Monro" no longer be associated with this structure, and the term "foramen" be abandoned. Instead, FoM should be more appropriately renamed as the "interventricular canaliculus," or IVC, for short.
Asunto(s)
Ventrículos Cerebrales/anatomía & histología , Ventrículos Cerebrales/diagnóstico por imagen , Imagen por Resonancia Magnética , Terminología como Asunto , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto JovenRESUMEN
Hyperpolarized 13C Magnetic Resonance Imaging (13C-MRI) provides a highly sensitive tool to probe tissue metabolism in vivo and has recently been translated into clinical studies. We report the cerebral metabolism of intravenously injected hyperpolarized [1-13C]pyruvate in the brain of healthy human volunteers for the first time. Dynamic acquisition of 13C images demonstrated 13C-labeling of both lactate and bicarbonate, catalyzed by cytosolic lactate dehydrogenase and mitochondrial pyruvate dehydrogenase respectively. This demonstrates that both enzymes can be probed in vivo in the presence of an intact blood-brain barrier: the measured apparent exchange rate constant (kPL) for exchange of the hyperpolarized 13C label between [1-13C]pyruvate and the endogenous lactate pool was 0.012⯱â¯0.006 s-1 and the apparent rate constant (kPB) for the irreversible flux of [1-13C]pyruvate to [13C]bicarbonate was 0.002⯱â¯0.002 s-1. Imaging also revealed that [1-13C]pyruvate, [1-13C]lactate and [13C]bicarbonate were significantly higher in gray matter compared to white matter. Imaging normal brain metabolism with hyperpolarized [1-13C]pyruvate and subsequent quantification, have important implications for interpreting pathological cerebral metabolism in future studies.
Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Isótopos de Carbono , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Ácido Pirúvico , Adulto , Femenino , Humanos , MasculinoRESUMEN
OBJECTIVES: Integrating multiple imaging modalities is crucial for MRI data interpretation. The purpose of this study is to determine whether a previously proposed multi-view approach can effectively integrate the histogram features from multi-parametric MRI and whether the selected features can offer incremental prognostic values over clinical variables. METHODS: Eighty newly-diagnosed glioblastoma patients underwent surgery and chemoradiotherapy. Histogram features of diffusion and perfusion imaging were extracted from contrast-enhancing (CE) and non-enhancing (NE) regions independently. An unsupervised patient clustering was performed by the multi-view approach. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the relevance of patient clustering to survival. The metabolic signatures of patient clusters were compared using multi-voxel spectroscopy analysis. The prognostic values of histogram features were evaluated by survival and ROC curve analyses. RESULTS: Two patient clusters were generated, consisting of 53 and 27 patients respectively. Cluster 2 demonstrated better overall survival (OS) (p = 0.007) and progression-free survival (PFS) (p < 0.001) than Cluster 1. Cluster 2 displayed lower N-acetylaspartate/creatine ratio in NE region (p = 0.040). A higher mean value of anisotropic diffusion in NE region was associated with worse OS (hazard ratio [HR] = 1.40, p = 0.020) and PFS (HR = 1.36, p = 0.031). The seven features selected by this approach showed significantly incremental value in predicting 12-month OS (p = 0.020) and PFS (p = 0.022). CONCLUSIONS: The multi-view clustering method can provide an effective integration of multi-parametric MRI. The histogram features selected may be used as potential prognostic markers. KEY POINTS: ⢠Multi-parametric magnetic resonance imaging captures multi-faceted tumor physiology. ⢠Contrast-enhancing and non-enhancing tumor regions represent different tumor components with distinct clinical relevance. ⢠Multi-view data analysis offers a method which can effectively select and integrate multi-parametric and multi-regional imaging features.
Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/patología , Análisis por Conglomerados , Medios de Contraste , Femenino , Glioblastoma/patología , Humanos , Aumento de la Imagen/métodos , Estimación de Kaplan-Meier , Espectroscopía de Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Fenotipo , Modelos de Riesgos Proporcionales , Reproducibilidad de los Resultados , Estudios RetrospectivosRESUMEN
PURPOSE: This prospective study evaluated the use of vascular, extracellular and restricted diffusion for cytometry in tumours (VERDICT) MRI to investigate the tissue microstructure in glioma. VERDICT-derived parameters were correlated with both histological features and tumour subtype and were also used to explore the peritumoural region. METHODS: Fourteen consecutive treatment-naïve patients (43.5 years ± 15.1 years, six males, eight females) with suspected glioma underwent diffusion-weighted imaging including VERDICT modelling. Tumour cell radius and intracellular and combined extracellular/vascular volumes were estimated using a framework based on linearisation and convex optimisation. An experienced neuroradiologist outlined the peritumoural oedema, enhancing tumour and necrosis on T2-weighted imaging and contrast-enhanced T1-weighted imaging. The same regions of interest were applied to the co-registered VERDICT maps to calculate the microstructure parameters. Pathology sections were analysed with semi-automated software to measure cellularity and cell size. RESULTS: VERDICT parameters were successfully calculated in all patients. The imaging-derived results showed a larger intracellular volume fraction in high-grade glioma compared to low-grade glioma (0.13 ± 0.07 vs. 0.08 ± 0.02, respectively; p = 0.05) and a trend towards a smaller extracellular/vascular volume fraction (0.88 ± 0.07 vs. 0.92 ± 0.04, respectively; p = 0.10). The conventional apparent diffusion coefficient was higher in low-grade gliomas compared to high-grade gliomas, but this difference was not statistically significant (1.22 ± 0.13 × 10-3 mm2/s vs. 0.98 ± 0.38 × 10-3 mm2/s, respectively; p = 0.18). CONCLUSION: This feasibility study demonstrated that VERDICT MRI can be used to explore the tissue microstructure of glioma using an abbreviated protocol. The VERDICT parameters of tissue structure correlated with those derived on histology. The method shows promise as a potential test for diagnostic stratification and treatment response monitoring in the future. KEY POINTS: ⢠VERDICT MRI is an advanced diffusion technique which has been correlated with histopathological findings obtained at surgery from patients with glioma in this study. ⢠The intracellular volume fraction measured with VERDICT was larger in high-grade tumours compared to that in low-grade tumours. ⢠The results were complementary to measurements from conventional diffusion-weighted imaging, and the technique could be performed in a clinically feasible timescale.
Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Adulto , Anciano , Neoplasias Encefálicas/patología , Imagen de Difusión por Resonancia Magnética/métodos , Estudios de Factibilidad , Femenino , Glioma/patología , Humanos , Angiografía por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estudios Prospectivos , Reproducibilidad de los Resultados , Adulto JovenRESUMEN
Sophisticated volume measurements of brain structures on magnetic resonance imaging (MRI) may improve specificity in determining long-term progression of multiple sclerosis (MS), but these techniques are laborious. The optic chiasm (OC) is a white matter (WM) structure clearly visible on a routine MRI and is related to the optic nerves (ONs), which are known to atrophy in MS. We hypothesized that OC morphometric measurements would show OC atrophy in MS compared to normal patients. If so, this could help establish a novel simplified brain MRI measure of WM atrophy in MS patients. We retrospectively evaluated standard brain MRIs of 97 patients with known MS and 98 normal individuals. We electronically measured eight OC morphometrics on axial T2WIs and midsagittal T1WIs: OC width and anteroposterior (AP) diameter, diameters of each ON and optic tract (OT), and angles between the ONs or OTs. Mean OC width, AP diameter, and height in MS patients were 11.83 ± 1.25 mm (95% CI 11.58-12.09), 2.99 ± 0.65 mm (95% CI 2.85-3.12), and 2.09 ± 0.37 mm (95% CI 2-2.19), respectively. In normal individuals, they were 12.1 ± 1.4 mm (95% CI 11.78-12.34), 3.43 ± 0.63 mm (95% CI 3.3-3.58), and 2.15 ± 0.37 mm (95% CI 2.07-2.23), respectively. There were statistically significant differences between MS patients and controls for AP diameter (P = 0.000), but not for width (P = 0.204) or height (P = 0.183). The ONs were significantly smaller in MS (P < 0.0017), but not the OTs. Thus, the OC is significantly atrophied in an unstratified cohort of MS patients. Future studies may establish an MRI OC morphometric index to evaluate demyelinating disease in the brain. Clin. Anat. 32:1072-1081, 2019. © 2019 Wiley Periodicals, Inc.
Asunto(s)
Esclerosis Múltiple/diagnóstico por imagen , Quiasma Óptico/diagnóstico por imagen , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Estudios de Factibilidad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Grade IV glioma is the most common and aggressive primary brain tumour. Gross total resection with 5-aminolevulinic acid (5-ALA) guided surgery combined with local chemotherapy (carmustine wafers) is an attractive treatment strategy in these patients. No previous studies have examined the benefit carmustine wafers in a treatment programme of 5-ALA guided resection followed by a temozolomide-based chemoradiotherapy protocol. The objective of this study was to examine the benefit of carmustine wafers on survival in patients undergoing 5-ALA guided resection. A retrospective cohort study of 260 patients who underwent 5-ALA resection of confirmed WHO 2007 Grade IV glioma between July 2009 and December 2014. Survival curves were calculated using the Kaplan-Meier method from surgery. The log-rank test was used to compare survival curves between groups. Cox regression was performed to identify variables predicting survival. A propensity score matched analysis was used to compare survival between patients who did and did not receive carmustine wafers while controlling for baseline characteristics. Propensity matched analysis showed no significant survival benefit of insertion of carmustine wafers over 5-ALA resection alone (HR 0.97 [0.68-1.26], p = 0.836). There was a trend to higher incidence of wound infection in those who received carmustine wafers (15.4 vs. 7.1%, p = 0.064). The Cox regression analysis showed that intraoperative residual fluorescent tumour and residual enhancing tumour on post-operative MRI were significantly predictive of reduced survival. Carmustine wafers have no added benefit following 5-ALA guided resection. Residual fluorescence and residual enhancing disease following resection have a negative impact on survival.
Asunto(s)
Ácido Aminolevulínico/administración & dosificación , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/cirugía , Carmustina/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/cirugía , Femenino , Humanos , Aumento de la Imagen , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos/métodos , Estudios Retrospectivos , Resultado del Tratamiento , Infección de Heridas/inducido químicamenteRESUMEN
OBJECTIVE: Imaging studies in diffuse low-grade gliomas (DLGG) vary across centers. In order to establish a minimal core of imaging necessary for further investigations and clinical trials in the field of DLGG, we aimed to establish the status quo within specialized European centers. METHODS: An online survey composed of 46 items was sent out to members of the European Low-Grade Glioma Network, the European Association of Neurosurgical Societies, the German Society of Neurosurgery and the Austrian Society of Neurosurgery. RESULTS: A total of 128 fully completed surveys were received and analyzed. Most centers (n = 96, 75%) were academic and half of the centers (n = 64, 50%) adhered to a dedicated treatment program for DLGG. There were national differences regarding the sequences enclosed in MRI imaging and use of PET, however most included T1 (without and with contrast, 100%), T2 (100%) and TIRM or FLAIR (20, 98%). DWI is performed by 80% of centers and 61% of centers regularly performed PWI. CONCLUSION: A minimal core of imaging composed of T1 (w/wo contrast), T2, TIRM/FLAIR, PWI and DWI could be identified. All morphologic images should be obtained in a slice thickness of ≤ 3 mm. No common standard could be obtained regarding advanced MRI protocols and PET. IMPORTANCE OF THE STUDY: We believe that our study makes a significant contribution to the literature because we were able to determine similarities in numerous aspects of LGG imaging. Using the proposed "minimal core of imaging" in clinical routine will facilitate future cooperative studies.
Asunto(s)
Neoplasias Encefálicas/diagnóstico , Glioma/diagnóstico , Imagen por Resonancia Magnética/métodos , Guías de Práctica Clínica como Asunto/normas , Pautas de la Práctica en Medicina/normas , Especialización , Neoplasias Encefálicas/cirugía , Europa (Continente) , Glioma/cirugía , Humanos , Clasificación del Tumor , Procedimientos Neuroquirúrgicos , Encuestas y CuestionariosRESUMEN
Purpose To determine whether regions of low apparent diffusion coefficient (ADC) with high relative cerebral blood volume (rCBV) represented elevated choline (Cho)-to-N-acetylaspartate (NAA) ratio (hereafter, Cho/NAA ratio) and whether their volumes correlated with progression-free survival (PFS) and overall survival (OS) in patients with glioblastoma (GBM). Materials and Methods This retrospective analysis was approved by the local research ethics committee. Volumetric analysis of imaging data from 43 patients with histologically confirmed GBM was performed. Patients underwent preoperative 3-T magnetic resonance imaging with conventional, diffusion-weighted, perfusion-weighted, and spectroscopic sequences. Patients underwent subsequent surgery with adjuvant chemotherapy and radiation therapy. Overlapping low-ADC and high-rCBV regions of interest (ROIs) (hereafter, ADC-rCBV ROIs) were generated in contrast-enhancing and nonenhancing regions. Cho/NAA ratio in ADC-rCBV ROIs was compared with that in control regions by using analysis of variance. All resulting ROI volumes were correlated with patient survival by using multivariate Cox regression. Results ADC-rCBV ROIs within contrast-enhancing and nonenhancing regions showed elevated Cho/NAA ratios, which were significantly higher than those in other abnormal tumor regions (P < .001 and P = .008 for contrast-enhancing and nonenhancing regions, respectively) and in normal-appearing white matter (P < .001 for both contrast-enhancing and nonenhancing regions). After Cox regression analysis controlling for age, tumor size, resection extent, O-6-methylguanine-DNA methyltransferase-methylation, and isocitrate dehydrogenase mutation status, the proportional volume of ADC-rCBV ROIs in nonenhancing regions significantly contributed to multivariate models of OS (hazard ratio, 1.132; P = .026) and PFS (hazard ratio, 1.454; P = .017). Conclusion Volumetric analysis of ADC-rCBV ROIs in nonenhancing regions of GBM can be used to identify patients with poor survival trends after accounting for known confounders of GBM patient outcome.
Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Adulto , Anciano , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Biomarcadores/metabolismo , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Colina/metabolismo , Medios de Contraste , Imagen de Difusión Tensora , Progresión de la Enfermedad , Femenino , Glioblastoma/mortalidad , Glioblastoma/patología , Glioblastoma/terapia , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Compuestos Organometálicos , Estudios Prospectivos , Estudios RetrospectivosRESUMEN
INTRODUCTION: Tumour growth has been used to successfully predict progression-free survival in low-grade glioma. This systematic review sought to establish the evidence base regarding the correlation of volumetric growth rates with histological diagnosis and potential to predict clinical outcome in patients with meningioma. METHODS: This systematic review was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Databases were searched for full text English articles analysing volumetric growth rates in patients with a meningioma. RESULTS: Four retrospective cohort studies were accepted, demonstrating limited evidence of significantly different tumour doubling rates and shapes of growth curves between benign and atypical meningiomas. Heterogeneity of patient characteristics and timing of volumetric assessment, both pre- and post-operatively, limited pooled analysis of the data. No studies performed statistical analysis to demonstrate the clinical utility of growth rates in predicting clinical outcome. CONCLUSION: This systematic review provides limited evidence in support of the use of volumetric growth rates in meningioma to predict histological diagnosis and clinical outcome to guide future monitoring and treatment.
Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/terapia , Meningioma/diagnóstico , Meningioma/patología , Meningioma/terapiaRESUMEN
INTRODUCTION: Advances in radiological imaging techniques have enabled volumetric measurements of meningiomas to be easily monitored using serial imaging scans. There is limited literature on the relationship between tumour growth rates and the WHO classification of meningiomas despite tumour growth being a major determinant of type and timing of intervention. Volumetric growth has been successfully used to assess growth of low-grade glioma; however, there is limited information on the volumetric growth rate (VGR) of meningiomas. This study aimed to determine the reliability of VGR measurement in patients with meningioma, assess the relationship between VGR and 2016 WHO grading as well as clinical applicability of VGR in monitoring meningioma growth. METHODS: All histologically proven intracranial meningiomas that underwent resection in a single centre between April 2009 and April 2014 were reviewed and classified according to the 2016 edition of the Classification of the Tumours of the CNS. Only patients who had two pre-operative scans that were at least 3 months apart were included in the study. Two authors performed the volumetric measurements using the Slicer 3D software independently and the inter-rater reliability was assessed. Multiple regression analyses of factors affecting the VGR and VDE of meningiomas were performed using the R statistical software with p < 0.05 considered to be statistically significant. RESULTS: Of 548 patients who underwent resection of their meningiomas, 66 met the inclusion criteria. Sixteen cases met the exclusion criteria (NF2, spinal location, previous surgical or radiation treatment, significant intra-osseous component and poor quality imaging). Forty-two grade I and 8 grade II meningiomas were included in the analysis. The VGR was significantly higher for grade II meningiomas. Using receiver-operator characteristic (ROC) curve analysis, the optimal threshold that distinguishes between grade I and II meningiomas is 3 cm3/year. Higher histological grade, high initial tumour volume, MRI T2-signal hyperintensity and presence of oedema were found to be significant predictors of higher VGR. CONCLUSION: Reliable tools now exist to evaluate and monitor volumetric growth of meningiomas. Grade II meningiomas have significantly higher VGR compared with grade I meningiomas and growth of more than 3 cm3/year is strongly suggestive of a higher grade meningioma. A larger, multi-centre prospective study to investigate the applicability of velocity of growth to predict the outcome of patients with meningioma is warranted.
Asunto(s)
Neoplasias Meníngeas/patología , Meningioma/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Neoplasias Meníngeas/diagnóstico por imagen , Meningioma/diagnóstico por imagen , Persona de Mediana Edad , Clasificación del Tumor , Reproducibilidad de los Resultados , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Carga Tumoral , Adulto JovenAsunto(s)
Conservadores de la Densidad Ósea/efectos adversos , Denosumab/efectos adversos , Ácido Ibandrónico/efectos adversos , Maxilares/diagnóstico por imagen , Osteonecrosis/inducido químicamente , Osteonecrosis/complicaciones , Anciano , Femenino , Humanos , Osteonecrosis/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodosRESUMEN
There is an expanding research interest in high-grade gliomas because of their significant population burden and poor survival despite the extensive standard multimodal treatment. One of the obstacles is the lack of individualized monitoring of tumor characteristics and treatment response before, during and after treatment. We have developed a two-stage semi-automatic method to co-register MRI scans at different time points before and after surgical and adjuvant treatment of high-grade gliomas. This two-stage co-registration includes a linear co-registration of the semi-automatically derived mask of the preoperative contrast-enhancing area or postoperative resection cavity, brain contour and ventricles between different time points. The resulting transformation matrix was then applied in a non-linear manner to co-register conventional contrast-enhanced T1 -weighted images. Targeted registration errors were calculated and compared with linear and non-linear co-registered images. Targeted registration errors were smaller for the semi-automatic non-linear co-registration compared with both the non-linear and linear co-registered images. This was further visualized using a three-dimensional structural similarity method. The semi-automatic non-linear co-registration allowed for optimal correction of the variable brain shift at different time points as evaluated by the minimal targeted registration error. This proposed method allows for the accurate evaluation of the treatment response, essential for the growing research area of brain tumor imaging and treatment response evaluation in large sets of patients. Copyright © 2016 John Wiley & Sons, Ltd.
Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnica de Sustracción , Adulto , Anciano , Algoritmos , Neoplasias Encefálicas/patología , Femenino , Estudios de Seguimiento , Glioblastoma/patología , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Resultado del TratamientoAsunto(s)
Neoplasias de la Médula Ósea/diagnóstico , Neoplasias de la Médula Ósea/secundario , Neoplasias Cerebelosas/patología , Meduloblastoma/patología , Biopsia , Médula Ósea/patología , Neoplasias Cerebelosas/diagnóstico por imagen , Niño , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética/métodos , Masculino , Meduloblastoma/diagnóstico por imagenRESUMEN
Neuroferritinopathy is a disorder of neurodegeneration with brain iron accumulation that has no proven disease-modifying treatments. Clinical trials require biomarkers of iron deposition. We examined brain iron accumulation in one presymptomatic FTL mutation carrier, two individuals with neuroferritinopathy and one healthy control using ultra-high-field 7T MRI. There was increased magnetic susceptibility, suggestive of iron deposition, in superficial and deep gray matter in both presymptomatic and symptomatic neuroferritinopathy. Cavitation of the putamen and globus pallidus increased with disease stage and at follow up. The widespread brain iron deposition in presymptomatic and early disease provides an opportunity for monitoring disease-modifying intervention.
Asunto(s)
Trastornos del Metabolismo del Hierro , Hierro , Imagen por Resonancia Magnética , Distrofias Neuroaxonales , Humanos , Distrofias Neuroaxonales/diagnóstico por imagen , Distrofias Neuroaxonales/genética , Distrofias Neuroaxonales/metabolismo , Distrofias Neuroaxonales/patología , Trastornos del Metabolismo del Hierro/diagnóstico por imagen , Trastornos del Metabolismo del Hierro/metabolismo , Trastornos del Metabolismo del Hierro/genética , Hierro/metabolismo , Adulto , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Persona de Mediana Edad , Apoferritinas/metabolismo , Apoferritinas/genéticaRESUMEN
BACKGROUND: Arterial bleeding in the interpeduncular fossa is a dreaded complication of endoscopic third ventriculostomy (ETV). When the "safe zone" of the tuber cinereum (TC) is fenestrated, the basilar artery tip (BT) or its branches may be encountered below the third ventriclular floor. Major arterial injuries might be avoided by careful preoperative planning. We aimed to establish previously unavailable normal magnetic resonance imaging (MRI) and MR angiographic (MRA) morphometry and configuration of the BT and posterior cerebral artery P1 segments relative to the TC. METHODS: We analyzed images of 82 patients with non-dilated ventricles (mean Evans' index 0.26), and lying in a neutral head position (mean cervico-medullary angle 141°). We cross-referenced axial MRAs with sagittal MRIs to measure distances of BT and P1 segments from the TC, and to classify the location of the BT in the interpeduncular and suprasellar cisterns. We correlated the sagittal areas of these cisterns and patients' ages with the TC-to-artery distances using regression analysis. RESULTS: The BT, right P1 and left P1 segments were a mean 4.9 mm, 5.5 mm, and 5.7 mm respectively from the TC. Seventy-four percent of BTs were anterior to the mammillary bodies. These distances and locations did not correlate with age (mean 53 years) or size of basal cisterns. CONCLUSIONS: The normal BT and P1 segments are anatomically close to the TC and potentially at risk during ETV in adults of all ages. The new morphometric data presented, along with cross-referencing of preoperative multiplanar images, could help reduce vascular complications during ETV.