Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosci ; 43(13): 2260-2276, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36801823

RESUMEN

Glia are essential to protecting and enabling nervous system function and a key glial function is the formation of the glial sheath around peripheral axons. Each peripheral nerve in the Drosophila larva is ensheathed by three glial layers, which structurally support and insulate the peripheral axons. How peripheral glia communicate with each other and between layers is not well established and we investigated the role of Innexins in mediating glial function in the Drosophila periphery. Of the eight Drosophila Innexins, we found two (Inx1 and Inx2) are important for peripheral glia development. In particular loss of Inx1 and Inx2 resulted in defects in the wrapping glia leading to disruption of the glia wrap. Of interest loss of Inx2 in the subperineurial glia also resulted in defects in the neighboring wrapping glia. Inx plaques were observed between the subperineurial glia and the wrapping glia suggesting that gap junctions link these two glial cell types. We found Inx2 is key to Ca2+ pulses in the peripheral subperineurial glia but not in the wrapping glia, and we found no evidence of gap junction communication between subperineurial and wrapping glia. Rather we have clear evidence that Inx2 plays an adhesive and channel-independent role between the subperineurial and wrapping glia to ensure the integrity of the glial wrap.SIGNIFICANCE STATEMENT Gap junctions are critical for glia communication and formation of myelin in myelinating glia. However, the role of gap junctions in non-myelinating glia is not well studied, yet non-myelinating glia are critical for peripheral nerve function. We found the Innexin gap junction proteins are present between different classes of peripheral glia in Drosophila. Here Innexins form junctions to facilitate adhesion between the different glia but do so in a channel-independent manner. Loss of adhesion leads to disruption of the glial wrap around axons and leads to fragmentation of the wrapping glia membranes. Our work points to an important role for gap junction proteins in mediating insulation by non-myelinating glia.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuroglía/metabolismo , Sistema Nervioso Periférico/metabolismo , Drosophila/metabolismo , Axones/metabolismo , Conexinas/genética , Conexinas/metabolismo
2.
PLoS Biol ; 16(4): e2004718, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29702642

RESUMEN

Sarcomeres are stereotyped force-producing mini-machines of striated muscles. Each sarcomere contains a pseudocrystalline order of bipolar actin and myosin filaments, which are linked by titin filaments. During muscle development, these three filament types need to assemble into long periodic chains of sarcomeres called myofibrils. Initially, myofibrils contain immature sarcomeres, which gradually mature into their pseudocrystalline order. Despite the general importance, our understanding of myofibril assembly and sarcomere maturation in vivo is limited, in large part because determining the molecular order of protein components during muscle development remains challenging. Here, we applied polarization-resolved microscopy to determine the molecular order of actin during myofibrillogenesis in vivo. This method revealed that, concomitantly with mechanical tension buildup in the myotube, molecular actin order increases, preceding the formation of immature sarcomeres. Mechanistically, both muscle and nonmuscle myosin contribute to this actin order gain during early stages of myofibril assembly. Actin order continues to increase while myofibrils and sarcomeres mature. Muscle myosin motor activity is required for the regular and coordinated assembly of long myofibrils but not for the high actin order buildup during sarcomere maturation. This suggests that, in muscle, other actin-binding proteins are sufficient to locally bundle or cross-link actin into highly regular arrays.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Actinas/metabolismo , Drosophila melanogaster/ultraestructura , Miofibrillas/ultraestructura , Pupa/ultraestructura , Sarcómeros/ultraestructura , Citoesqueleto de Actina/metabolismo , Actinas/ultraestructura , Animales , Fenómenos Biomecánicos , Conectina/metabolismo , Conectina/ultraestructura , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Vuelo Animal/fisiología , Microscopía de Polarización/métodos , Miofibrillas/metabolismo , Miosinas/metabolismo , Miosinas/ultraestructura , Pupa/crecimiento & desarrollo , Pupa/metabolismo , Sarcómeros/metabolismo
3.
J Exp Bot ; 71(10): 3126-3141, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31985780

RESUMEN

Drought events are a major challenge for many horticultural crops, including grapes, which are often cultivated in dry and warm climates. It is not understood how the cuticle contributes to the grape berry response to water deficit (WD); furthermore, the cuticular waxes and the related biosynthetic pathways are poorly characterized in this fruit. In this study, we identified candidate wax-related genes from the grapevine genome by phylogenetic and transcriptomic analyses. Developmental and stress response expression patterns of these candidates were characterized across pre-existing RNA sequencing data sets and confirmed a high responsiveness of the pathway to environmental stresses. We then characterized the developmental and WD-induced changes in berry cuticular wax composition, and quantified differences in berry transpiration. Cuticular aliphatic wax content was modulated during development and an increase was observed under WD, with wax esters being strongly up-regulated. These compositional changes were related to up-regulated candidate genes of the aliphatic wax biosynthetic pathway, including CER10, CER2, CER3, CER1, CER4, and WSD1. The effect of WD on berry transpiration was not significant. This study indicates that changes in cuticular wax amount and composition are part of the metabolic response of the grape berry to WD, but these changes do not reduce berry transpiration.


Asunto(s)
Vitis , Sequías , Frutas/genética , Filogenia , Vitis/genética , Ceras
4.
Development ; 142(12): 2184-93, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26015542

RESUMEN

In the nervous system, glial cells need to be specified from a set of progenitor cells. In the developing Drosophila eye, perineurial glia proliferate and differentiate as wrapping glia in response to a neuronal signal conveyed by the FGF receptor pathway. To unravel the underlying transcriptional network we silenced all genes encoding predicted DNA-binding proteins in glial cells using RNAi. Dref and other factors of the TATA box-binding protein-related factor 2 (TRF2) complex were previously predicted to be involved in cellular metabolism and cell growth. Silencing of these genes impaired early glia proliferation and subsequent differentiation. Dref controls proliferation via activation of the Pdm3 transcription factor, whereas glial differentiation is regulated via Dref and the homeodomain protein Cut. Cut expression is controlled independently of Dref by FGF receptor activity. Loss- and gain-of-function studies show that Cut is required for glial differentiation and is sufficient to instruct the formation of membrane protrusions, a hallmark of wrapping glial morphology. Our work discloses a network of transcriptional regulators controlling the progression of a naïve perineurial glia towards the fully differentiated wrapping glia.


Asunto(s)
Drosophila melanogaster/embriología , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Neurogénesis/genética , Neuroglía/citología , Animales , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Activación Enzimática , Ojo/inervación , Redes Reguladoras de Genes , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética
5.
Development ; 142(7): 1336-45, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25758464

RESUMEN

Efficient neuronal conductance requires that axons are insulated by glial cells. For this, glial membranes need to wrap around axons. Invertebrates show a relatively simple extension of glial membranes around the axons, resembling Remak fibers formed by Schwann cells in the mammalian peripheral nervous system. To unravel the molecular pathways underlying differentiation of glial cells that provide axonal wrapping, we are using the genetically amenable Drosophila model. At the end of larval life, the wrapping glia differentiates into very large cells, spanning more than 1 mm of axonal length. The extension around axonal membranes is not influenced by the caliber of the axon or its modality. Using cell type-specific gene knockdown we show that the extension of glial membranes around the axons is regulated by an autocrine activation of the EGF receptor through the neuregulin homolog Vein. This resembles the molecular mechanism employed during cell-autonomous reactivation of glial differentiation after injury in mammals. We further demonstrate that Vein, produced by the wrapping glia, also regulates the formation of septate junctions in the abutting subperineurial glia. Moreover, the wrapping glia indirectly controls the proliferation of the perineurial glia. Thus, the wrapping glia appears center stage to orchestrate the development of the different glial cell layers in a peripheral nerve.


Asunto(s)
Axones/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurregulinas/metabolismo , Neuroglía/metabolismo , Sistema Nervioso Periférico/metabolismo , Homología de Secuencia de Aminoácido , Animales , Axones/ultraestructura , Barrera Hematoencefálica/metabolismo , Diferenciación Celular , Drosophila melanogaster/citología , Drosophila melanogaster/ultraestructura , Receptores ErbB/metabolismo , Larva/citología , Larva/metabolismo , Larva/ultraestructura , Neuroglía/citología , Neuroglía/ultraestructura , Nervios Periféricos/citología , Nervios Periféricos/metabolismo , Nervios Periféricos/ultraestructura , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/ultraestructura , Transducción de Señal
6.
Development ; 141(16): 3233-42, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063458

RESUMEN

Cell migration is an important feature of glial cells. Here, we used the Drosophila eye disc to decipher the molecular network controlling glial migration. We stimulated glial motility by pan-glial PDGF receptor (PVR) activation and identified several genes acting downstream of PVR. Drosophila lox is a non-essential gene encoding a secreted protein that stiffens the extracellular matrix (ECM). Glial-specific knockdown of Integrin results in ECM softening. Moreover, we show that lox expression is regulated by Integrin signaling and vice versa, suggesting that a positive-feedback loop ensures a rigid ECM in the vicinity of migrating cells. The general implication of this model was tested in a mammalian glioma model, where a Lox-specific inhibitor unraveled a clear impact of ECM rigidity in glioma cell migration.


Asunto(s)
Ojo Compuesto de los Artrópodos/embriología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Matriz Extracelular/fisiología , Neuroglía/citología , Proteína-Lisina 6-Oxidasa/fisiología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Matriz Extracelular/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Glioblastoma/metabolismo , Humanos , Integrinas/metabolismo , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Trasplante de Neoplasias , Proteína-Lisina 6-Oxidasa/genética , Transducción de Señal
7.
Nat Commun ; 11(1): 4491, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32901033

RESUMEN

The functionality of the nervous system requires transmission of information along axons with high speed and precision. Conductance velocity depends on axonal diameter whereas signaling precision requires a block of electrical crosstalk between axons, known as ephaptic coupling. Here, we use the peripheral nervous system of Drosophila larvae to determine how glia regulates axonal properties. We show that wrapping glial differentiation depends on gap junctions and FGF-signaling. Abnormal glial differentiation affects axonal diameter and conductance velocity and causes mild behavioral phenotypes that can be rescued by a sphingosine-rich diet. Ablation of wrapping glia does not further impair axonal diameter and conductance velocity but causes a prominent locomotion phenotype that cannot be rescued by sphingosine. Moreover, optogenetically evoked locomotor patterns do not depend on conductance speed but require the presence of wrapping glial processes. In conclusion, our data indicate that wrapping glia modulates both speed and precision of neuronal signaling.


Asunto(s)
Drosophila melanogaster/fisiología , Animales , Animales Modificados Genéticamente , Axones/fisiología , Diferenciación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Larva/citología , Larva/fisiología , Locomoción/fisiología , Modelos Neurológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuroglía/citología , Neuroglía/fisiología , Optogenética , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/fisiología , Fenotipo , Receptores de Factores de Crecimiento de Fibroblastos/fisiología , Transducción de Señal
8.
Elife ; 82019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31577228

RESUMEN

Tubular networks like the vasculature extend branches throughout animal bodies, but how developing vessels interact with and invade tissues is not well understood. We investigated the underlying mechanisms using the developing tracheal tube network of Drosophila indirect flight muscles (IFMs) as a model. Live imaging revealed that tracheal sprouts invade IFMs directionally with growth-cone-like structures at branch tips. Ramification inside IFMs proceeds until tracheal branches fill the myotube. However, individual tracheal cells occupy largely separate territories, possibly mediated by cell-cell repulsion. Matrix metalloproteinase 1 (MMP1) is required in tracheal cells for normal invasion speed and for the dynamic organization of growth-cone-like branch tips. MMP1 remodels the CollagenIV-containing matrix around branch tips, which show differential matrix composition with low CollagenIV levels, while Laminin is present along tracheal branches. Thus, tracheal-derived MMP1 sustains branch invasion by modulating the dynamic behavior of sprouting branches as well as properties of the surrounding matrix.


Asunto(s)
Drosophila/embriología , Drosophila/enzimología , Metaloproteinasa 1 de la Matriz/metabolismo , Músculos/embriología , Tráquea/embriología , Animales , Colágeno Tipo IV/metabolismo , Laminina/metabolismo
9.
Brain Res ; 1641(Pt A): 122-129, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-26367447

RESUMEN

Neuronal function requires constant working conditions and a well-balanced supply of ions and metabolites. The metabolic homeostasis in the nervous system crucially depends on the presence of glial cells, which nurture and isolate neuronal cells. Here we review recent findings on how these tasks are performed by glial cells in the genetically amenable model organism Drosophila melanogaster. Despite the small size of its nervous system, which would allow diffusion of metabolites, a surprising division of labor between glial cells and neurons is evident. Glial cells are glycolytically active and transfer lactate and alanine to neurons. Neurons in turn do not require glycolysis but can use the glially provided compounds for their energy homeostasis. Besides feeding neurons, glial cells also insulate neuronal axons in a way similar to Remak fibers in the mammalian nervous system. The molecular mechanisms orchestrating this insulation require neuregulin signaling and resemble the mechanisms controlling glial differentiation in mammals surprisingly well. We hypothesize that metabolic cross talk and insulation of neurons by glial cells emerged early during evolution as two closely interlinked features in the nervous system. This article is part of a Special Issue entitled SI: Myelin Evolution.


Asunto(s)
Axones/metabolismo , Drosophila melanogaster/metabolismo , Neuroglía/metabolismo , Animales , Evolución Biológica , Encéfalo/metabolismo , Neuronas/metabolismo
10.
Dev Cell ; 33(5): 535-48, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-25982676

RESUMEN

In epithelia, specialized tricellular junctions (TCJs) mediate cell contacts at three-cell vertices. TCJs are fundamental to epithelial biology and disease, but only a few TCJ components are known, and how they assemble at tricellular vertices is not understood. Here we describe a transmembrane protein, Anakonda (Aka), which localizes to TCJs and is essential for the formation of tricellular, but not bicellular, junctions in Drosophila. Loss of Aka causes epithelial barrier defects associated with irregular TCJ structure and geometry, suggesting that Aka organizes cell corners. Aka is necessary and sufficient for accumulation of Gliotactin at TCJs, suggesting that Aka initiates TCJ assembly by recruiting other proteins to tricellular vertices. Aka's extracellular domain has an unusual tripartite repeat structure that may mediate self-assembly, directed by the geometry of tricellular vertices. Conversely, Aka's cytoplasmic tail is dispensable for TCJ localization. Thus, extracellular interactions, rather than TCJ-directed intracellular transport, appear to mediate TCJ assembly.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Embrión no Mamífero/citología , Epitelio/crecimiento & desarrollo , Uniones Intercelulares/fisiología , Uniones Estrechas/fisiología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero/metabolismo , Epitelio/metabolismo , Immunoblotting , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas , Secuencias Repetitivas de Aminoácido
11.
Sci Signal ; 6(300): ra96, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24194583

RESUMEN

During development, differentiation is often initiated by the activation of different receptor tyrosine kinases (RTKs), which results in the tightly regulated activation of cytoplasmic signaling cascades. In the differentiation of neurons and glia in the developing Drosophila eye, we found that the proper intensity of RTK signaling downstream of fibroblast growth factor receptor (FGFR) or epidermal growth factor receptor required two mutually antagonistic feedback loops. We identified a positive feedback loop mediated by the Ras association (RA) domain-containing protein Rau that sustained Ras activity and counteracted the negative feedback loop mediated by Sprouty. Rau has two RA domains that together showed a binding preference for GTP (guanosine 5'-triphosphate)-loaded (active) Ras. Rau homodimerized and was found in large-molecular weight complexes. Deletion of rau in flies decreased the differentiation of retinal wrapping glia and induced a rough eye phenotype, similar to that seen in alterations of Ras signaling. Further, the expression of sprouty was repressed and that of rau was increased by the COUP transcription factor Seven-up in the presence of weak, but not constitutive, activation of FGFR. Together, our findings reveal another regulatory mechanism that controls the intensity of RTK signaling in the developing neural network in the Drosophila eye.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Ojo/embriología , Retroalimentación Fisiológica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/fisiología , Animales , Western Blotting , Factores de Transcripción COUP/metabolismo , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/fisiología , Ojo/citología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Inmunohistoquímica , Hibridación in Situ , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Neuroglía/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Esteroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA