Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 42(7): 1904-1918, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28303498

RESUMEN

The successful identification of promising investigational therapies for the treatment of epilepsy can be credited to the use of numerous animal models of seizure and epilepsy for over 80 years. In this time, the maximal electroshock test in mice and rats, the subcutaneous pentylenetetrazol test in mice and rats, and more recently the 6 Hz assay in mice, have been utilized as primary models of electrically or chemically-evoked seizures in neurologically intact rodents. In addition, rodent kindling models, in which chronic network hyperexcitability has developed, have been used to identify new agents. It is clear that this traditional screening approach has greatly expanded the number of marketed drugs available to manage the symptomatic seizures associated with epilepsy. In spite of the numerous antiseizure drugs (ASDs) on the market today, the fact remains that nearly 30% of patients are resistant to these currently available medications. To address this unmet medical need, the National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP) revised its approach to the early evaluation of investigational agents for the treatment of epilepsy in 2015 to include a focus on preclinical approaches to model pharmacoresistant seizures. This present report highlights the in vivo and in vitro findings associated with the initial pharmacological validation of this testing approach using a number of mechanistically diverse, commercially available antiseizure drugs, as well as several probe compounds that are of potential mechanistic interest to the clinical management of epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Evaluación Preclínica de Medicamentos/normas , Epilepsia Refractaria/tratamiento farmacológico , Animales , Evaluación Preclínica de Medicamentos/métodos , Epilepsia Refractaria/inducido químicamente , Epilepsia Refractaria/etiología , Electrochoque/efectos adversos , Ácido Kaínico/toxicidad , Excitación Neurológica/efectos de los fármacos , Excitación Neurológica/fisiología , Masculino , Ratones , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley
2.
Epilepsia ; 57(9): 1386-97, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27466022

RESUMEN

OBJECTIVE: Some antiseizure drugs (ASDs) are associated with cognitive liability in patients with epilepsy, thus ASDs without this risk would be preferred. Little comparative pharmacology exists with ASDs in preclinical models of cognition. Few pharmacologic studies exist on the acute effects in rodents with chronic seizures. Predicting risk for cognitive impact with preclinical models may supply valuable ASD differentiation data. METHODS: ASDs (phenytoin [PHT]; carbamazepine [CBZ]; valproic acid [VPA]; lamotrigine [LTG]; phenobarbital [PB]; tiagabine [TGB]; retigabine [RTG]; topiramate [TPM]; and levetiracetam [LEV]) were administered equivalent to maximal electroshock median effective dose ([ED50]; mice, rats), or median dose necessary to elicit minimal motor impairment (median toxic dose [TD50]; rats). Cognition models with naive adult rodents were novel object/place recognition (NOPR) task with CF-1 mice, and Morris water maze (MWM) with Sprague-Dawley rats. Selected ASDs were also administered to rats prior to testing in an open field. The effect of chronic seizures and ASD administration on cognitive performance in NOPR was also determined with corneal-kindled mice. Mice that did not achieve kindling criterion (partially kindled) were included to examine the effect of electrical stimulation on cognitive performance. Sham-kindled and age-matched mice were also tested. RESULTS: No ASD (ED50) affected latency to locate the MWM platform; TD50 of PB, RTG, TPM, and VPA reduced this latency. In naive mice, CBZ and VPA (ED50) reduced time with the novel object. Of interest, no ASD (ED50) affected performance of fully kindled mice in NOPR, whereas CBZ and LEV improved cognitive performance of partially kindled mice. SIGNIFICANCE: Standardized approaches to the preclinical evaluation of an ASD's potential cognitive impact are needed to inform drug development. This study demonstrated acute, dose- and model-dependent effects of therapeutically relevant doses of ASDs on cognitive performance of naive mice and rats, and corneal-kindled mice. This study highlights the challenge of predicting clinical adverse effects with preclinical models.


Asunto(s)
Anticonvulsivantes/efectos adversos , Trastornos del Conocimiento/inducido químicamente , Córnea/inervación , Excitación Neurológica , Convulsiones/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Electrochoque/efectos adversos , Conducta Exploratoria , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Antagonistas Muscarínicos , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología , Escopolamina/toxicidad , Convulsiones/etiología , Natación
3.
PLoS Pathog ; 9(12): e1003834, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24385908

RESUMEN

The possibility of HIV-1 eradication has been limited by the existence of latently infected cellular reservoirs. Studies to examine control of HIV latency and potential reactivation have been hindered by the small numbers of latently infected cells found in vivo. Major conceptual leaps have been facilitated by the use of latently infected T cell lines and primary cells. However, notable differences exist among cell model systems. Furthermore, screening efforts in specific cell models have identified drug candidates for "anti-latency" therapy, which often fail to reactivate HIV uniformly across different models. Therefore, the activity of a given drug candidate, demonstrated in a particular cellular model, cannot reliably predict its activity in other cell model systems or in infected patient cells, tested ex vivo. This situation represents a critical knowledge gap that adversely affects our ability to identify promising treatment compounds and hinders the advancement of drug testing into relevant animal models and clinical trials. To begin to understand the biological characteristics that are inherent to each HIV-1 latency model, we compared the response properties of five primary T cell models, four J-Lat cell models and those obtained with a viral outgrowth assay using patient-derived infected cells. A panel of thirteen stimuli that are known to reactivate HIV by defined mechanisms of action was selected and tested in parallel in all models. Our results indicate that no single in vitro cell model alone is able to capture accurately the ex vivo response characteristics of latently infected T cells from patients. Most cell models demonstrated that sensitivity to HIV reactivation was skewed toward or against specific drug classes. Protein kinase C agonists and PHA reactivated latent HIV uniformly across models, although drugs in most other classes did not.


Asunto(s)
Linfocitos T CD4-Positivos/virología , VIH-1/fisiología , Modelos Biológicos , Activación Viral , Latencia del Virus , Acetamidas/farmacología , Adulto , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Cultivadas , Células HEK293 , Infecciones por VIH/inmunología , Infecciones por VIH/patología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Interleucina-7/farmacología , Células Jurkat , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Vorinostat
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA