Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 44(20)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569923

RESUMEN

Our prior research has identified neural correlates of cognitive control in the anterior cingulate cortex (ACC), leading us to hypothesize that the ACC is necessary for increasing attention as rats flexibly learn new contingencies during a complex reward-guided decision-making task. Here, we tested this hypothesis by using optogenetics to transiently inhibit the ACC, while rats of either sex performed the same two-choice task. ACC inhibition had a profound impact on behavior that extended beyond deficits in attention during learning when expected outcomes were uncertain. We found that ACC inactivation slowed and reduced the number of trials rats initiated and impaired both their accuracy and their ability to complete sessions. Furthermore, drift-diffusion model analysis suggested that free-choice performance and evidence accumulation (i.e., reduced drift rates) were degraded during initial learning-leading to weaker associations that were more easily overridden in later trial blocks (i.e., stronger bias). Together, these results suggest that in addition to attention-related functions, the ACC contributes to the ability to initiate trials and generally stay on task.


Asunto(s)
Giro del Cíngulo , Optogenética , Ratas Long-Evans , Animales , Giro del Cíngulo/fisiología , Masculino , Ratas , Femenino , Atención/fisiología , Recompensa , Conducta de Elección/fisiología , Toma de Decisiones/fisiología , Inhibición Neural/fisiología
2.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128939

RESUMEN

The anterior cingulate cortex (ACC) has been implicated across multiple highly specialized cognitive functions-including task engagement, motivation, error detection, attention allocation, value processing, and action selection. Here, we ask if ACC lesions disrupt task performance and firing in dorsomedial striatum (DMS) during the performance of a reward-guided decision-making task that engages many of these cognitive functions. We found that ACC lesions impacted several facets of task performance-including decreasing the initiation and completion of trials, slowing reaction times, and resulting in suboptimal and inaccurate action selection. Reductions in movement times towards the end of behavioral sessions further suggested attenuations in motivation, which paralleled reductions in directional action selection signals in the DMS that were observed later in recording sessions. Surprisingly, however, beyond altered action signals late in sessions-neural correlates in the DMS were largely unaffected, even though behavior was disrupted at multiple levels. We conclude that ACC lesions result in overall deficits in task engagement that impact multiple facets of task performance during our reward-guided decision-making task, which-beyond impacting motivated action signals-arise from dysregulated attentional signals in the ACC and are mediated via downstream targets other than DMS.


Asunto(s)
Cuerpo Estriado , Toma de Decisiones , Giro del Cíngulo , Neuronas , Recompensa , Giro del Cíngulo/fisiología , Giro del Cíngulo/fisiopatología , Animales , Masculino , Toma de Decisiones/fisiología , Neuronas/fisiología , Cuerpo Estriado/fisiología , Cuerpo Estriado/fisiopatología , Potenciales de Acción/fisiología , Tiempo de Reacción/fisiología , Motivación/fisiología , Desempeño Psicomotor/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA