Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 35(9): e21810, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34390520

RESUMEN

Copper (Cu) is an essential micronutrient required for the activity of redox-active enzymes involved in critical metabolic reactions, signaling pathways, and biological functions. Transporters and chaperones control Cu ion levels and bioavailability to ensure proper subcellular and systemic Cu distribution. Intensive research has focused on understanding how mammalian cells maintain Cu homeostasis, and how molecular signals coordinate Cu acquisition and storage within organs. In humans, mutations of genes that regulate Cu homeostasis or facilitate interactions with Cu ions lead to numerous pathologic conditions. Malfunctions of the Cu+ -transporting ATPases ATP7A and ATP7B cause Menkes disease and Wilson disease, respectively. Additionally, defects in the mitochondrial and cellular distributions and homeostasis of Cu lead to severe neurodegenerative conditions, mitochondrial myopathies, and metabolic diseases. Cu has a dual nature in carcinogenesis as a promotor of tumor growth and an inducer of redox stress in cancer cells. Cu also plays role in cancer treatment as a component of drugs and a regulator of drug sensitivity and uptake. In this review, we provide an overview of the current knowledge of Cu metabolism and transport and its relation to various human pathologies.


Asunto(s)
Cobre/metabolismo , Homeostasis/fisiología , Animales , Transporte Biológico/fisiología , ATPasas Transportadoras de Cobre/metabolismo , Humanos , Enfermedades Metabólicas/metabolismo , Enfermedades Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo
2.
Biochim Biophys Acta Gene Regul Mech ; 1865(2): 194801, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35217218

RESUMEN

The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) families of ATP-dependent chromatin remodeling enzymes are established co-regulators of gene expression. mSWI/SNF complexes can be assembled into three major subfamilies: BAF (BRG1 or BRM-Associated Factor), PBAF (Polybromo containing BAF), or ncBAF (non-canonical BAF) that are distinguished by the presence of mutually exclusive subunits. The mechanisms by which each subfamily contributes to the establishment or function of specific cell lineages are poorly understood. Here, we determined the contributions of the BAF, ncBAF, and PBAF complexes to myoblast proliferation via knock down (KD) of distinguishing subunits from each complex. KD of subunits unique to the BAF or the ncBAF complexes reduced myoblast proliferation rate, while KD of PBAF-specific subunits did not affect proliferation. RNA-seq from proliferating KD myoblasts targeting Baf250A (BAF complex), Brd9 (ncBAF complex), or Baf180 (PBAF complex) showed mis-regulation of a limited number of genes. KD of Baf250A specifically reduced the expression of Pax7, which is required for myoblast proliferation, concomitant with decreased binding of Baf250A to and impaired chromatin remodeling at the Pax7 gene promoter. Although Brd9 also bound to the Pax7 promoter, suggesting occupancy by the ncBAF complex, no changes were detected in Pax7 gene expression, Pax7 protein expression or chromatin remodeling at the Pax7 promoter upon Brd9 KD. The data indicate that the BAF subfamily of the mSWI/SNF enzymes is specifically required for myoblast proliferation via regulation of Pax7 expression.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona , Animales , Ciclo Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Mamíferos/genética , Mioblastos/metabolismo , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA