Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Ann Neurol ; 75(3): 395-410, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24339166

RESUMEN

OBJECTIVE: There is currently no pharmacological treatment that provides protection against brain injury in neonates. It is known that activation of an innate immune response is a key, contributing factor in perinatal brain injury; therefore, the neuroprotective therapeutic potential of innate defense regulator peptides (IDRs) was investigated. METHODS: The anti-inflammatory effects of 3 IDRs was measured in lipopolysaccharide (LPS)-activated murine microglia. IDRs were then assessed for their ability to confer neuroprotection in vivo when given 3 hours after neonatal brain injury in a clinically relevant model that combines an inflammatory challenge (LPS) with hypoxia-ischemia (HI). To gain insight into peptide-mediated effects on LPS-induced inflammation and neuroprotective mechanisms, global cerebral gene expression patterns were analyzed in pups that were treated with IDR-1018 either 4 hours before LPS or 3 hours after LPS+HI. RESULTS: IDR-1018 reduced inflammatory mediators produced by LPS-stimulated microglia cells in vitro and modulated LPS-induced neuroinflammation in vivo. When administered 3 hours after LPS+HI, IDR-1018 exerted effects on regulatory molecules of apoptotic (for, eg, Fadd and Tnfsf9) and inflammatory (for, eg, interleukin 1, tumor necrosis factor α, chemokines, and cell adhesion molecules) pathways and showed marked protection of both white and gray brain matter. INTERPRETATION: IDR-1018 suppresses proinflammatory mediators and cell injurious mechanisms in the developing brain, and postinsult treatment is efficacious in reducing LPS-induced hypoxic-ischemic brain damage. IDR-1018 is effective in the brain when given systemically, confers neuroprotection of both gray and white matter, and lacks significant effects on the brain under normal conditions. Thus, this peptide provides the features of a promising neuroprotective agent in newborns with brain injury.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/uso terapéutico , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Animales , Animales Recién Nacidos , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacocinética , Apoptosis/efectos de los fármacos , Lesiones Encefálicas/metabolismo , Corteza Cerebral/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hipoxia-Isquemia Encefálica/metabolismo , Inflamación/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Masculino , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacocinética , Cultivo Primario de Células , Distribución Tisular
2.
Pediatr Blood Cancer ; 61(1): 107-15, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23940083

RESUMEN

BACKGROUND: Molecular subtyping has allowed for the beginning of personalized treatment in children suffering from medulloblastoma (MB). However, resistance inevitably emerges against these therapies, particularly in the Sonic Hedgehog (SHH) subtype. We found that children with SHH subtype have the worst outcome underscoring the need to identify new therapeutic targets. PROCEDURE: High content screening of a 129 compound library identified agents that inhibited SHH MB growth. Lead molecular target levels, p90 ribosomal S6 kinase (RSK) were characterized by immunoblotting and qRT-PCR. Comparisons were made to human neural stem cells (hNSC). Impact of inhibiting RSK with the small molecule BI-D1870 or siRNA was assessed in growth assays (monolayer, neurosphere, and soft agar). NanoString was used to detect RSK in a cohort of 66 patients with MB. To determine BI-D1870 pharmacokinetics/pharmacodynamics, 100 mg/kg was I.P. injected into mice and tissues were collected at various time points. RESULTS: Daoy, ONS76, UW228, and UW426 MB cells were exquisitely sensitive to BI-D1870 but unresponsive to SHH inhibitors. Anti-tumor growth corresponded with inactivation of RSK in MB cells. BI-D1870 had no effect on hNSCs. Inhibiting RSK with siRNA or BI-D1870 suppressed growth, induced apoptosis, and sensitized cells to SHH agents. Notably, RSK expression is correlated with SHH patients. In mice, BI-D1870 was well-tolerated and crossed the blood-brain barrier (BBB). CONCLUSIONS: RSK inhibitors are promising because they target RSK which is correlated with SHH patients as well as cause high levels of apoptosis to only MB cells. Importantly, BI-D1870 crosses the BBB, acting as a scaffold for development of more long-lived RSK inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Cerebelosas/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Meduloblastoma/genética , Pteridinas/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Animales , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Cerebelosas/enzimología , Niño , Cromatografía Liquida , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Proteínas Hedgehog/antagonistas & inhibidores , Humanos , Immunoblotting , Masculino , Espectrometría de Masas , Meduloblastoma/enzimología , Ratones , Pteridinas/farmacocinética , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Distribución Tisular , Transcriptoma , Transfección
3.
Artículo en Inglés | MEDLINE | ID: mdl-31015853

RESUMEN

For more than 2500 years, acupuncture has been applied to support the healing of different diseases and physiologic malfunctions. Although various theories of the meridian system and mechanisms were formulated to explain the functional basis of acupuncture, the anatomical basis for the concept of meridians has not been resolved. The aim of the present study was to search for replicable anatomical structures that could relate to meridians. To this end, four human specimens and additionally two lower legs were dissected anatomically. Our study found evidence that acupuncture meridians were part of the human extracellular matrix and that fascia was an important part of the anatomic substrate of acupuncture meridians. At the same time, we found vessel-nerve-bundles, which were hypothesized to account for 80% of acupuncture points, only in a few acupuncture points. Therefore, our findings contradict the theory that acupuncture points are only located along the nervous channels.

4.
Biochim Biophys Acta ; 1768(5): 1121-7, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17321495

RESUMEN

The drug retention and circulation lifetime properties of liposomal nanoparticles (LN) containing dihydrosphingomyelin (DHSM) have been investigated. It is shown that replacement of egg sphingomyelin (ESM) by DHSM in sphingomyelin/cholesterol (Chol) (55/45; mol/mol) LN results in substantially improved drug retention properties both in vitro and in vivo. In the case of liposomal formulations of vincristine, for example, the half-times for drug release (T(1/2)) were approximately 3-fold longer for DHSM/Chol LN as compared to ESM/Chol LN, both in vitro and in vivo. Further increases in T(1/2) could be achieved by increasing the drug-to-lipid ratio of the liposomal vincristine formulations. In addition, DHSM/Chol LN also exhibit improved circulation lifetimes in vivo as compared to ESM/Chol LN. For example, the half-time for LN clearance (Tc(1/2)) at a low lipid dose (15 micromol lipid/kg, corresponding to 8 mg lipid/kg body weight) in mice was 3.8 h for ESM/Chol LN compared to 6 h for DHSM/Chol LN. In addition, it is also shown that DHSM/Chol LN exhibit much longer half-times for vincristine release as compared to LN with the "Stealth" lipid composition. It is anticipated that DHSM/Chol LN will prove useful as drug delivery vehicles due to their excellent drug retention and circulation lifetime properties.


Asunto(s)
Liposomas/farmacocinética , Nanopartículas , Esfingomielinas/farmacocinética , Vincristina/farmacocinética , Animales , Bovinos , Colesterol , Portadores de Fármacos , Femenino , Semivida , Ratones , Transición de Fase , Temperatura
5.
Cancer Chemother Pharmacol ; 58(2): 245-55, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16341532

RESUMEN

To quantitatively evaluate the extravasation, accumulation and selectivity to tumor tissues of liposomal vincristine (LV), dorsal skin-fold window chambers on athymic mice with or without LX-1, a human small cell lung cancer, xenograft implants and fluorescent intravital microscopy imaging were used. In vitro studies show that minimal loss of fluorescence marker DiI from liposomes occurs after 4 days of inoculation in murine plasma, and the release profiles of DiI-LV and LV were essentially the same with approximately 40% of the encapsulated vincristine sulfate (VCR) released after 26 h. Significantly faster extravasation of DiI-LV from tumor vessels was shown compared to non-tumor tissue after single dose i.v. administration. The relative interstitial amounts at 60 min (RIA(60)) for tumor and non-tumor tissues were 0.837+/-0.314 and 0.012+/-0.091, respectively (P=0.01). DiI-LV accumulation was significantly higher in tumor than in normal tissue, which continued beyond 48 h. Both DiI-LV and LV showed significant antitumor effects in window chambers and in flank tumors, compared with controls and VLS alone. The preferential extravasation of DiI-LV from tumor vasculature as well as its differential retention in tumor tissue provides the basis for the enhancement in antitumor activity of LV over VCR.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/farmacocinética , Extravasación de Materiales Terapéuticos y Diagnósticos , Vincristina/farmacología , Vincristina/farmacocinética , Animales , Antineoplásicos Fitogénicos/sangre , Línea Celular Tumoral , Colorantes Fluorescentes , Humanos , Liposomas , Ratones , Ratones Desnudos , Microscopía Fluorescente , Trasplante de Neoplasias , Neovascularización Patológica/tratamiento farmacológico , Distribución Tisular , Vincristina/sangre
6.
J Control Release ; 110(2): 378-386, 2006 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-16318894

RESUMEN

The development of procedures to enhance drug retention in liposomes is important in order to achieve therapeutically optimized rates of drug release from liposomal carriers. In this study, the ability of lipophilic weak base drugs to complex with arylsulfonates resulting in formation of intravesicular precipitates is investigated as a means to enhance drug retention. It is shown that the arylsulfonates benzenesulfonate and hydroxybenzenesulfonate (HBS) induce precipitation of ciprofloxacin and vinorelbine, two representative weak base drugs that are difficult to retain in liposomal systems. The most complete precipitation was observed at pH values corresponding to charge neutralization of the drug-arylsulfonate complex. HBS is shown to be a much more effective precipitating agent than benzenesulfonate. It is also shown that vinorelbine and ciprofloxacin can be loaded into large unilamellar vesicles (LUV) containing the calcium salt of HBS using an ionophore-based loading method. Following drug loading, the formation of intravesicular drug-arylsulfonate precipitates of vinorelbine and ciprofloxacin was observed by cryo-electron microscopy. In vitro release experiments showed substantial improvements in drug retention for both vinorelbine and ciprofloxacin when HBS was present as compared to standard loading procedures employing MgSO4 as the entrapped solute. In vivo release experiments for vinorelbine in NuNu mice indicated a half-time for release for HBS-containing LUV of approximately 30 h, compared to 6.4 h for LUV loaded employing MgSO4. It is suggested that encapsulation procedures employing HBS in the internal medium can improve the retention of drugs that are difficult to retain in liposomes, possibly leading to enhanced therapeutic properties.


Asunto(s)
Arilsulfonatos/química , Química Farmacéutica , Liposomas , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/farmacocinética , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Ciprofloxacina/administración & dosificación , Ciprofloxacina/química , Ciprofloxacina/farmacocinética , Microscopía por Crioelectrón , Excipientes , Femenino , Células HT29 , Humanos , Ratones , Microscopía Electrónica de Transmisión , Trasplante de Neoplasias , Soluciones , Vinblastina/administración & dosificación , Vinblastina/análogos & derivados , Vinblastina/química , Vinblastina/farmacocinética , Vinorelbina
8.
Biochim Biophys Acta ; 1565(1): 129-35, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12225861

RESUMEN

In many applications, an ability of liposomes to retain drug and then rapidly release it at some later time would be of benefit. In this work, we investigate the ability of cationic large unilamellar vesicles (LUV) to promote rapid release of doxorubicin from anionic LUV. It is shown that the addition of cationic liposomes containing cholesterol, dioleoylphosphatidylethanolamine (DOPE), distearoylphosphatidylcholine (DSPC) and the cationic lipid N,N-dioleyl-N,N-dimethylammonium chloride (DODAC) to doxorubicin-containing LUV composed of cholesterol, DOPE, DSPC and the anionic lipid dioleoyphosphatidylglycerol (DOPG) can result in release of more than 90% of the drug in times of 30 s or less. Further, it is shown that these release characteristics are exquisitely dependent on the presence of DOPE and cholesterol. In the absence of DOPE, much slower release rates are observed, with maximum release levels of 50% after a 2-h incubation at 20 degrees C. Remarkably, threshold levels of more than 10 mol% cholesterol are required before any appreciable release is observed. [31P]NMR spectroscopy and freeze-fracture electron microscopy studies reveal that systems giving rise to rapid release of doxorubicin exhibit limited formation of inverted hexagonal (H(II)) phase, suggesting that these lipids facilitate drug release by formation of local regions of non-bilayer structure. It is concluded that drug release triggered by mixing anionic and cationic liposomes could be of utility in drug delivery applications.


Asunto(s)
Doxorrubicina/administración & dosificación , Liposomas/química , Fosfatidilgliceroles/química , Aniones , Cationes , Colesterol , Sistemas de Liberación de Medicamentos , Técnica de Fractura por Congelación , Espectroscopía de Resonancia Magnética , Microscopía Electrónica , Fosfatidiletanolaminas , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología
9.
J Control Release ; 104(1): 103-11, 2005 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-15866338

RESUMEN

A comparative study of the loading and retention properties of three structurally very closely related vinca alkaloids (vincristine, vinorelbine and vinblastine) in liposomal formulations has been performed. All three vinca alkaloids showed high levels of encapsulation when accumulated into egg sphingomyelin/cholesterol vesicles in response to a transmembrane pH gradient generated by the use of the ionophore A23187 and encapsulated MgSO4. However, despite the close similarities of their structures the different vinca drugs exhibited very different release behavior, with vinblastine and vinorelbine being released faster than vincristine both in vitro and in vivo. The differences in loading and retention can be related to the lipophilicity of the drugs tested, where the more hydrophobic drugs are released more rapidly. It was also found that increasing the drug-to-lipid ratio significantly enhanced the retention of vinca alkaloids when the ionophore-based method was used for drug loading. In contrast, drug retention was not dependent on the initial drug-to-lipid ratio for vinca drugs loaded into liposomes containing an acidic citrate buffer. The differences in retention can be explained on the basis of differences in the physical state of the drug inside the liposomes. The drug-to-lipid ratio dependence of retention observed for liposomes loaded with the ionophore technique may provide a way to improve the retention characteristics of liposomal formulations of vinca drugs.


Asunto(s)
Vinblastina/análogos & derivados , Vinblastina/química , Vinblastina/farmacocinética , Vincristina/química , Vincristina/farmacocinética , Animales , Calcimicina/química , Femenino , Inyecciones Intravenosas , Ionóforos/química , Liposomas , Sulfato de Magnesio/química , Ratones , Ratones Endogámicos ICR , Solubilidad , Vinblastina/administración & dosificación , Vincristina/administración & dosificación , Vinorelbina
10.
J Pharm Sci ; 94(5): 1024-38, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15793796

RESUMEN

Vinorelbine (VRL) is a particularly lipophilic member of the vinca alkaloids which, as a class of drugs, exhibit improved cytotoxicity and therapeutic activity through increased duration of exposure. Here, we describe and optimize a sphingomyelin/cholesterol (SM/Chol) liposome formulation of VRL to maximize in vivo drug retention, plasma circulation time, and therapeutic activity. VRL was efficiently encapsulated (>90%) into 100 nm liposomes using an ionophore-mediated loading method. VRL retention in SM/Chol liposomes after intravenous injection in mice was dependent on drug-to-lipid ratio (D/L), with higher D/L ratios exhibiting increased drug retention (0.3 > 0.2 > 0.1, wt/wt) and improved pharmacokinetics. Cryo-electron microscopic examination of a high D/L ratio formulation indicated that the intravesicular regions of these liposomes were electron dense compared with empty liposomes. The optimized, high D/L ratio SM/Chol VRL formulation showed promising activity against subcutaneous B16 melanoma tumors compared with VRL or SM/Chol formulations of vincristine or vinblastine. Finally, the stability of the formulation was excellent (<5% drug leakage, >99% intact VRL, no changes in liposome size after 1 year at 2-8 degrees C). The optimized drug retention properties of the SM/Chol formulation of VRL, combined with its promising antitumor activity and pharmaceutical stability, make this formulation an excellent candidate for future clinical development.


Asunto(s)
Antineoplásicos Fitogénicos/química , Colesterol/química , Esfingomielinas/química , Vinblastina/análogos & derivados , Vinblastina/química , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacocinética , Calcimicina/química , Química Farmacéutica , Cromatografía Líquida de Alta Presión , Microscopía por Crioelectrón , Estabilidad de Medicamentos , Excipientes , Femenino , Concentración de Iones de Hidrógeno , Ionóforos/química , Liposomas , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Tamaño de la Partícula , Vinblastina/administración & dosificación , Vinblastina/farmacocinética , Alcaloides de la Vinca/administración & dosificación , Alcaloides de la Vinca/química , Alcaloides de la Vinca/farmacocinética , Vinorelbina
11.
J Cancer ; 4(7): 585-96, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069069

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to chemotherapy. It has been described as requiring elevated autophagy for growth and inhibiting autophagy has been proposed as a treatment strategy. To date, all preclinical reports and clinical trials investigating pharmacological inhibition of autophagy have used chloroquine or hydroxychloroquine, which interfere with lysosomal function and block autophagy at a late stage. Verteporfin is a newly discovered autophagy inhibitor that blocks autophagy at an early stage by inhibiting autophagosome formation. Here we report that PDAC cell lines show variable sensitivity to verteporfin in vitro, suggesting cell-line specific autophagy dependence. Using image-based and molecular analyses, we show that verteporfin inhibits autophagy stimulated by gemcitabine, the current standard treatment for PDAC. Pharmacokinetic and efficacy studies in a BxPC-3 xenograft mouse model demonstrated that verteporfin accumulated in tumors at autophagy-inhibiting levels and inhibited autophagy in vivo, but did not reduce tumor volume or increase survival as a single agent. In combination with gemcitabine verteporfin moderately reduced tumor growth and enhanced survival compared to gemcitabine alone. While our results do not uphold the premise that autophagy inhibition might be widely effective against PDAC as a single-modality treatment, they do support autophagy inhibition as an approach to sensitize PDAC to gemcitabine.

12.
Beilstein J Nanotechnol ; 2: 561-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22003462

RESUMEN

Terthiophene (3T) molecules adsorbed on herringbone (HB) reconstructed Au(111) surfaces in the low coverage regime were investigated by means of low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) under ultra-high vacuum conditions. The 3T molecules adsorb preferentially in fcc regions of the HB reconstruction with their longer axis oriented perpendicular to the soliton walls of the HB and at maximum mutual separation. The latter observation points to a repulsive interaction between molecules probably due to parallel electrical dipoles formed during adsorption. Constant-separation (I-V) and constant-current (z-V) STS clearly reveal the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals, which are found at -1.2 eV and +2.3 eV, respectively. The HOMO-LUMO gap corresponds to that of a free molecule, indicating a rather weak interaction between 3T and Au(111). According to conductivity maps, the HOMO and LUMO are inhomogeneously distributed over the adsorbed 3T, with the HOMO being located at the ends of the linear molecule, and the LUMO symmetrically with respect to the longer axis of the molecule at the center of its flanks. Analysis of spectroscopic data reveals details of the contrast mechanism of 3T/Au(111) in STM. For that, the Shockley-like surface state of Au(111) plays an essential role and appears shifted outwards from the surface in the presence of the molecule. As a consequence, the molecule can be imaged even at a tunneling bias within its HOMO-LUMO gap. A more quantitative analysis of this detail resolves a previous discrepancy between the fairly small apparent STM height of 3T molecules (1.4-2.0 nm, depending on tunneling bias) and a corresponding larger value of 3.5 nm based on X-ray standing wave analysis. An additionally observed linear decrease of the differential tunneling barrier at positive bias when determined on top of a 3T molecule is compared to the bias independent barrier obtained on bare Au(111) surfaces. This striking difference of the barrier behavior with and without adsorbed molecules is interpreted as indicating an adsorption-induced dimensionality transition of the involved tunneling processes.

13.
J Control Release ; 144(3): 332-40, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20202473

RESUMEN

Hydrophobic uncharged drugs such as docetaxel are difficult to encapsulate and retain in liposomal nanoparticles (LNP). In this work we show that a weak base derivative of docetaxel can be actively loaded into LNP using pH gradient loading techniques to achieve stable drug encapsulation and controlled release properties. Docetaxel was derivatized at the hydroxyl group in the C-2' position to form an N-methyl-piperazinyl butanoic acid ester. The free hydroxyl group in this position is essential for anticancer activity and the prodrug has, therefore, to be converted into the parent drug (docetaxel) to restore activity. Cytotoxicity testing against a panel of cancer cell lines (breast, prostate and ovarian cancer) demonstrated that the prodrug is readily converted into active drug; the derivative was found to be as active as the parent drug in vitro. The docetaxel derivative can be efficiently loaded at high drug-to-lipid ratios (up to 0.4 mg/mg) into LNP using pH loading techniques. Pharmacokinetic, tolerability and efficacy studies in mice demonstrate that the LNP-encapsulated prodrug has the long drug circulation half-life required for efficient tumor accumulation (50-100 times higher drug plasma levels compared with free derivative and Taxotere, the commercial docetaxel formulation), is active in a xenograft model of breast cancer (MDA-MB-435/LCC6), and is well tolerated at i.v. doses of 3 times higher than the maximum tolerated dose (MTD) of the parent drug. This is the first demonstration that a therapeutically active, remote-loaded, controlled-release LNP formulation of a taxane can be achieved. The approach reported here has broad applicability to other approved drugs as well as new chemical entities.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Lípidos/química , Nanopartículas/química , Taxoides/administración & dosificación , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Microscopía por Crioelectrón , Docetaxel , Composición de Medicamentos , Estabilidad de Medicamentos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ratones , Estructura Molecular , Solubilidad , Taxoides/química , Taxoides/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Bioconjug Chem ; 13(3): 671-5, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12009960

RESUMEN

The synthesis, physical properties, and transfection potencies of two representives of a new class of divalent, tetraalkyl cationic lipids is described. These cationic lipids are dimers of N,N-Dioleyl-N,N-dimethylammonium chloride (DODAC) joined by a hydrocarbon tether three or six carbons in length (TODMAC3 and TODMAC6, respectively). It is shown that TODMAC6 can display improved transfection properties in comparison to DODAC when formulated into plasmid DNA-cationic lipid complexes. These improved transfection potencies are observed at cationic lipid to DNA charge ratios of two or higher. It is also shown that TODMAC6 exhibits equivalent or improved ability (as compared to DODAC) to induce nonbilayer structure in mixtures with anionic lipid. This is consistent with the hypothesis that the ability of cationic lipids to induce nonbilayer structures when mixed with anionic lipids is correlated to their transfection potency. Complexes containing TODMAC3 on the other hand exhibit lower transfection potencies than achieved with DODAC, behavior that is consistent with steric effects limiting the formation of ion pairs with anionic lipids. It is concluded that TODMAC6 exhibits potential as a transfection agent for in vitro and in vivo use and that the design of cationic lipids according to their ability to induce nonbilayer structure provides a useful guide for synthesis of new cationic lipids.


Asunto(s)
Cationes/metabolismo , Lípidos/química , Lípidos/síntesis química , Compuestos de Amonio Cuaternario/metabolismo , Cationes/química , Células Cultivadas/química , Células Cultivadas/metabolismo , ADN/química , ADN/metabolismo , Humanos , Metabolismo de los Lípidos , Espectroscopía de Resonancia Magnética , Plásmidos , Compuestos de Amonio Cuaternario/química , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA