Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 148: 107429, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38728910

RESUMEN

Cannabinoids bind to cannabinoid receptors CB1 and CB2 and their antitumoral activity has been reported against some various cancer cell lines. Some synthetic cannabinoids possessing indole rings such as JWH-015 and JWH-133 particularly bind to the cannabinoid CB2 receptor and it was reported that they inhibit the proliferation and growth of various cancer cells without their psychoactive effects. However, the pharmacological action mechanisms of the cannabinoids are completely unknown. In this study, we report the synthesis of some new cannabinoidic novel indoles and evaluate their anticancer activity on various cancerous and normal cell lines (U87, RPMI 8226, HL60 and L929) using several cellular and molecular assays including MTT assay, real-time q-PCR, scratch assay, DAPI assay, Annexin V-PE/7AAD staining, caspase3/7 activity tests. Our findings indicated that compounds 7, 10, 13, 16, and 17 could reduce cell viability effectively. Compound 17 markedly increased proapoptotic genes (BAX, BAD, and BIM), tumor suppressor gene (p53) expression levels as well as the BAX/BCL-2 ratio in U87 cells. In addition, 17 inhibited cell migration. Based on these results, 17 was chosen for determining the mechanism of cell death in U87 cells. DAPI and Annexin V-7AAD staining results showed that 17 induced apoptosis, moreover activated caspase 3/7 significantly. Hence, compound 17, was selected as a lead compound for further pharmacomodulation. To rationalize the observed biological activities of 17, our study also included a comprehensive analysis using molecular docking and MD simulations. This integrative approach revealed that 17 fits tightly into the active site of the CB2 receptor and is involved in key interactions that may be responsible for its anti-proliferative effects.


Asunto(s)
Antineoplásicos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Indoles , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Indoles/farmacología , Indoles/química , Indoles/síntesis química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Modelos Moleculares , Supervivencia Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Acetamidas/farmacología , Acetamidas/síntesis química , Acetamidas/química
2.
Turk J Chem ; 46(2): 295-301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38143480

RESUMEN

The design or investigation of fluorescence probes continues to receive attention with respect to the diverse applications of spectrofluorometry. Depending on the highly sensitive character, fluorescence spectroscopy-based methodologies have been widely used in recent years in different sciences, including analytical, environmental, and medicinal chemistry areas. In our previous works, we have shown the iron (III) selective on-off sensor properties of benzo[c]chromen-6-one derivatives. In this study, we have extrapolated this research to 4-substituted analogues and investigated both fluorescent and metal interaction properties. Following the synthesis and structure identification studies, (±)-7,8,9,10-tetrahydro-3-hydroxy-4-(1-hydroxyethyl)benzo[c]chromen-6-one was found as a fluorescent molecule displaying fluorescence enhancement in the presence of metals. This feature has been found quite different in comparison to the previous urolithins investigated. This finding suggested the substituent dependent effects and variations on the fluorescent properties of benzo[c]chromen-6-one system.

3.
Curr Med Chem ; 26(18): 3260-3278, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30678614

RESUMEN

Benzimidazole scaffold has been efficiently used for the design of various pharmacologically active molecules. Indeed, there are various benzimidazole drugs, available today, employed for the treatment of different diseases. Although there is no benzimidazole moiety containing a drug used in clinic today for the treatment of Alzheimer's Disease (AD), there have been many benzimidazole derivative compounds designed and synthesized to act on some of the validated and non-validated targets of AD. This paper aims to review the literature to describe these benzimidazole containing molecules designed to target some of the biochemical cascades shown to be involved in the development of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Bencimidazoles/química , Inhibidores de la Colinesterasa , Aminoaciltransferasas/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Descubrimiento de Drogas , Histamina/metabolismo , Antagonistas de los Receptores Histamínicos/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA