RESUMEN
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus1-4. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8+ lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8+ lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo. We found viraemia of more than 60 copies per ml in all macaques (n = 14; 100%) and in 41 out of a total of 56 samples (73.2%) that were collected each week after N-803 administration. Notably, concordant results were obtained in ART-treated HIV-infected humanized mice. In addition, we observed that co-culture with CD8+ T cells blocked the in vitro latency-reversing effect of N-803 on primary human CD4+ T cells that were latently infected with HIV. These results advance our understanding of the mechanisms responsible for latency reversal and lentivirus reactivation during ART-suppressed infection.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Interleucina-15/agonistas , Virus de la Inmunodeficiencia de los Simios/fisiología , Replicación Viral , Animales , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Interleucina-15/inmunología , Depleción Linfocítica , Macaca mulatta , Ratones , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Latencia del Virus , Replicación Viral/inmunologíaRESUMEN
Long-lasting, latently infected resting CD4+ T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir1. Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect2-9. Here we show that activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow-liver-thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4+ T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal-in combination with appropriate tools for systemic clearance of persistent HIV infection-greatly increases opportunities for HIV eradication.
Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , FN-kappa B/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Latencia del Virus , Alquinos/farmacología , Animales , Antirretrovirales/farmacología , Infecciones por VIH/metabolismo , VIH-1/efectos de los fármacos , Macaca mulatta , Ratones , Oligopéptidos/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Latencia del Virus/efectos de los fármacosRESUMEN
The "shock and kill" strategy for HIV-1 cure incorporates latency-reversing agents (LRA) in combination with interventions that aid the host immune system in clearing virally reactivated cells. LRAs have not yet been investigated in pediatric clinical or preclinical studies. Here, we evaluated an inhibitor of apoptosis protein (IAP) inhibitor (IAPi), AZD5582, that activates the noncanonical NF-κB (ncNF-κB) signaling pathway to reverse latency. Ten weekly doses of AZD5582 were intravenously administered at 0.1 mg/kg to rhesus macaque (RM) infants orally infected with SIVmac251 at 4 weeks of age and treated with a triple ART regimen for over 1 year. During AZD5582 treatment, on-ART viremia above the limit of detection (LOD, 60 copies/mL) was observed in 5/8 infant RMs starting at 3 days post-dose 4 and peaking at 771 copies/mL. Of the 135 measurements during AZD5582 treatment in these 5 RM infants, only 8 were above the LOD (6%), lower than the 46% we have previously reported in adult RMs. Pharmacokinetic analysis of plasma AZD5582 levels revealed a lower Cmax in treated infants compared to adults (294 ng/mL versus 802 ng/mL). RNA-Sequencing of CD4+ T cells comparing pre- and post-AZD5582 dosing showed many genes that were similarly upregulated in infants and adults, but the expression of key ncNF-κB genes, including NFKB2 and RELB, was significantly higher in adult RMs. Our results suggest that dosing modifications for this latency reversal approach may be necessary to maximize virus reactivation in the pediatric setting for successful "shock and kill" strategies. IMPORTANCE While antiretroviral therapy (ART) has improved HIV-1 disease outcome and reduced transmission, interruption of ART results in rapid viral rebound due to the persistent latent reservoir. Interventions to reduce the viral reservoir are of critical importance, especially for children who must adhere to lifelong ART to prevent disease progression. Here, we used our previously established pediatric nonhuman primate model of oral SIV infection to evaluate AZD5582, identified as a potent latency-reversing agent in adult macaques, in the controlled setting of daily ART. We demonstrated the safety of the IAPi AZD5582 and evaluate the pharmacokinetics and pharmacodynamics of repeated dosing. The response to AZD5582 in macaque infants differed from what we previously showed in adult macaques with weaker latency reversal in infants, likely due to altered pharmacokinetics and less inducibility of infant CD4+ T cells. These data supported the contention that HIV-1 cure strategies for children are best evaluated using pediatric model systems.
Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Alquinos/farmacocinética , Alquinos/farmacología , Alquinos/uso terapéutico , Animales , Antirretrovirales/farmacocinética , Antirretrovirales/farmacología , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , Macaca mulatta , Oligopéptidos/farmacocinética , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Carga Viral , Latencia del Virus/efectos de los fármacos , Replicación ViralRESUMEN
HIV-infected infants are at an increased risk of progressing rapidly to AIDS in the first weeks of life. Here, we evaluated immunological and virological parameters in 25 SIV-infected infant rhesus macaques to understand the factors influencing a rapid disease outcome. Infant macaques were infected with SIVmac251 and monitored for 10 to 17 weeks post-infection. SIV-infected infants were divided into either typical (TypP) or rapid (RP) progressor groups based on levels of plasma anti-SIV antibody and viral load, with RP infants having low SIV-specific antibodies and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype. Interestingly, TypP had lower levels of total CD4 T cells, similar reductions in CD4/CD8 ratios and elevated activation of CD8 T cells, as measured by the levels of HLA-DR, compared to RP. Differences between the two groups were identified in other immune cell populations, including a failure to expand activated memory (CD21-CD27+) B cells in peripheral blood in RP infant macaques, as well as reduced levels of germinal center (GC) B cells and T follicular helper (Tfh) cells in spleens (4- and 10-weeks post-SIV). Reduced B cell proliferation in splenic germinal GCs was associated with increased SIV+ cell density and follicular type 1 interferon (IFN)-induced immune activation. Further analyses determined that at 2-weeks post SIV infection TypP infants exhibited elevated levels of the GC-inducing chemokine CXCL13 in plasma, as well as significantly lower levels of viral envelope diversity compared to RP infants. Our findings provide evidence that early viral and immunologic events following SIV infection contributes to impairment of B cells, Tfh cells and germinal center formation, ultimately impeding the development of SIV-specific antibody responses in rapidly progressing infant macaques.
Asunto(s)
Progresión de la Enfermedad , Inmunidad Humoral , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/virología , Variación Genética , Centro Germinal/inmunología , Centro Germinal/virología , Humanos , Interferón Tipo I/inmunología , Tejido Linfoide/inmunología , Tejido Linfoide/virología , Macaca mulatta , Fenotipo , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Carga ViralRESUMEN
Inducing latency reversal to reveal infected cells to the host immune system represents a potential strategy to cure HIV infection. In separate studies, we have previously shown that CD8+ T cells may contribute to the maintenance of viral latency and identified a novel SMAC mimetic/IAP inhibitor (AZD5582) capable of reversing HIV/SIV latency in vivo by activating the non-canonical (nc) NF-κB pathway. Here, we use AZD5582 in combination with antibody-mediated depletion of CD8α+ cells to further evaluate the role of CD8+ T cells in viral latency maintenance. Six rhesus macaques (RM) were infected with SIVmac239 and treated with ART starting at week 8 post-infection. After 84-85 weeks of ART, all animals received a single dose of the anti-CD8α depleting antibody (Ab), MT807R1 (50mg/kg, s.c.), followed by 5 weekly doses of AZD5582 (0.1 mg/kg, i.v.). Following CD8α depletion + AZD5582 combined treatment, 100% of RMs experienced on-ART viremia above 60 copies per ml of plasma. In comparator groups of ART-suppressed SIV-infected RMs treated with AZD5582 only or CD8α depletion only, on-ART viremia was experienced by 56% and 57% of the animals respectively. Furthermore, the frequency of increased viremic episodes during the treatment period was greater in the CD8α depletion + AZD5582 group as compared to other groups. Mathematical modeling of virus reactivation suggested that, in addition to viral dynamics during acute infection, CD8α depletion influenced the response to AZD5582. This work suggests that the latency reversal induced by activation of the ncNF-κB signaling pathway with AZD5582 can be enhanced by CD8α+ cell depletion.
RESUMEN
To provide an accessible and inexpensive method to surveil for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations, we developed a multiplex real-time reverse transcription-PCR (rRT-PCR) assay, the Spike single-nucleotide polymorphism (SNP) assay, to detect specific mutations in the spike receptor binding domain. A single primer pair was designed to amplify a 348-bp region of spike, and probes were initially designed to detect K417, E484K, and N501Y. The assay was evaluated using characterized variant sample pools and residual nasopharyngeal samples. Variant calls were confirmed by SARS-CoV-2 genome sequencing in a subset of samples. Subsequently, a fourth probe was designed to detect L452R. The lower limit of 95% detection was 2.46 to 2.48 log10 genome equivalents (GE)/ml for the three initial targets (â¼1 to 2 GE/reaction). Among 253 residual nasopharyngeal swabs with detectable SARS-CoV-2 RNA, the Spike SNP assay was positive in 238 (94.1%) samples. All 220 samples with threshold cycle (CT) values of <30 for the SARS-CoV-2 N2 target were detected, whereas 18/33 samples with N2 CT values of ≥30 were detected. Spike SNP results were confirmed by sequencing in 50/50 samples (100%). Addition of the 452R probe did not affect performance for the original targets. The Spike SNP assay accurately identifies SARS-CoV-2 mutations in the receptor binding domain, and it can be quickly modified to detect new mutations that emerge.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción ReversaRESUMEN
The "shock-and-kill" human immunodeficiency virus type 1 (HIV-1) cure strategy involves latency reversal followed by immune-mediated clearance of infected cells. We have previously shown that activation of the noncanonical NF-κB pathway using an inhibitor of apoptosis (IAP), AZD5582, reverses HIV/simian immunodeficiency virus (SIV) latency. Here, we combined AZD5582 with bispecific HIVxCD3 DART molecules to determine the impact of this approach on persistence. Rhesus macaques (RMs) (n = 13) were infected with simian/human immunodeficiency virus SHIV.C.CH505.375H.dCT, and triple antiretroviral therapy (ART) was initiated after 16 weeks. After 42 weeks of ART, 8 RMs received a cocktail of 3 HIVxCD3 DART molecules having human A32, 7B2, or PGT145 anti-HIV-1 envelope (Env) specificities paired with a human anti-CD3 specificity that is rhesus cross-reactive. The remaining 5 ART-suppressed RMs served as controls. For 10 weeks, a DART molecule cocktail was administered weekly (each molecule at 1 mg/kg of body weight), followed 2 days later by AZD5582 (0.1 mg/kg). DART molecule serum concentrations were well above those considered adequate for redirected killing activity against Env-expressing target cells but began to decline after 3 to 6 weekly doses, coincident with the development of antidrug antibodies (ADAs) against each of the DART molecules. The combination of AZD5582 and the DART molecule cocktail did not increase on-ART viremia or cell-associated SHIV RNA in CD4+ T cells and did not reduce the viral reservoir size in animals on ART. The lack of latency reversal in the model used in this study may be related to low pre-ART viral loads (median, <105 copies/ml) and low preintervention reservoir sizes (median, <102 SHIV DNA copies/million blood CD4+ T cells). Future studies to assess the efficacy of Env-targeting DART molecules or other clearance agents to reduce viral reservoirs after latency reversal may be more suited to models that better minimize immunogenicity and have a greater viral burden.IMPORTANCE The most significant barrier to an HIV-1 cure is the existence of the latently infected viral reservoir that gives rise to rebound viremia upon cessation of ART. Here, we tested a novel combination approach of latency reversal with AZD5582 and clearance with bispecific HIVxCD3 DART molecules in SHIV.C.CH505-infected, ART-suppressed rhesus macaques. We demonstrate that the DART molecules were not capable of clearing infected cells in vivo, attributed to the lack of quantifiable latency reversal in this model with low levels of persistent SHIV DNA prior to intervention as well as DART molecule immunogenicity.
Asunto(s)
Alquinos/farmacología , Antirretrovirales/farmacología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Infecciones por VIH/tratamiento farmacológico , Oligopéptidos/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Viremia/tratamiento farmacológico , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Femenino , Regulación de la Expresión Génica , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Humanos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/inmunología , Macaca mulatta , FN-kappa B/genética , FN-kappa B/inmunología , Virus Reordenados/efectos de los fármacos , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Virus de la Inmunodeficiencia de los Simios/inmunología , Carga Viral/efectos de los fármacos , Viremia/genética , Viremia/inmunología , Viremia/virología , Latencia del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacosRESUMEN
Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) continues to cause new pediatric cases of infection through breastfeeding, a setting where it is not always possible to initiate early antiretroviral therapy (ART). Without novel interventions that do not rely on daily ART, HIV-1-infected children face lifelong medications to control infection. A detailed analysis of virus persistence following breast milk transmission of HIV-1 and ART has not been performed. Here, we used infant rhesus macaques orally infected with simian/human immunodeficiency virus (SHIV) (SHIV.C.CH505) to identify cellular and anatomical sites of virus persistence under ART. Viral DNA was detected at similar levels in blood and tissue CD4+ T cells after a year on ART, with virus in blood and lymphoid organs confirmed to be replication competent. Viral RNA/DNA ratios were elevated in rectal CD4+ T cells compared to those of other sites (P ≤ 0.0001), suggesting that the gastrointestinal tract is an active site of virus transcription during ART-mediated suppression of viremia. SHIV.C.CH505 DNA was detected in multiple CD4+ T cell subsets, including cells with a naive phenotype (CD45RA+ CCR7+ CD95-). While the frequency of naive cells harboring intact provirus was lower than in memory cells, the high abundance of naive cells in the infant CD4+ T cell pool made them a substantial source of persistent viral DNA (approximately 50% of the total CD4+ T cell reservoir), with an estimated 1:2 ratio of intact provirus to total viral DNA. This viral reservoir profile broadens our understanding of virus persistence in a relevant infant macaque model and provides insight into targets for cure-directed approaches in the pediatric population.IMPORTANCE Uncovering the sanctuaries of the long-lived HIV-1 reservoir is crucial to develop cure strategies. Pediatric immunity is distinct from that of adults, which may alter where the reservoir is established in infancy. Thus, it is important to utilize pediatric models to inform cure-directed approaches for HIV-1-infected children. We used an infant rhesus macaque model of HIV-1 infection via breastfeeding to identify key sites of viral persistence under antiretroviral therapy (ART). The gastrointestinal tract was found to be a site for low-level viral transcription during ART. We also show that naive CD4+ T cells harbored intact provirus and were a major contributor to blood and lymphoid reservoir size. This is particularly striking, as memory CD4+ T cells are generally regarded as the main source of latent HIV/simian immunodeficiency virus (SIV) infection of adult humans and rhesus macaques. Our findings highlight unique features of reservoir composition in pediatric infection that should be considered for eradication efforts.
Asunto(s)
Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/veterinaria , Macaca mulatta , Enfermedades de los Monos/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Administración Oral , Animales , Animales Recién Nacidos , ADN Viral/análisis , Reservorios de Enfermedades , Femenino , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , VIH-1 , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/transmisión , ARN Viral/análisis , Virus Reordenados/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga ViralRESUMEN
PURPOSE OF REVIEW: For most people living with HIV (PLWH), treatment with effective antiretroviral therapy (ART) results in suppression of viremia below the limit of detection of clinical assays, immune reconstitution, reduced immune activation, avoidance of opportunistic infections, and progression to AIDS. However, ART alone is not curative, and HIV persists in a non-replicating, latent form. In this review, we provide a historical perspective on non-specific latency reversal approaches (LRA 1.0) and summarize recent advances in latency reversal strategies that target specific signaling pathways within CD4+ T cells or other immune cells to induce expression of latent HIV (immune-based latency reversal, or LRA 2.0). RECENT FINDINGS: The HIV reservoir is primarily composed of latently infected CD4+ T cells carrying integrated, replication-competent provirus that can give rise to rebound viremia if ART is stopped. Myeloid lineage cells also contribute to HIV latency in certain tissues; we focus here on CD4+ T cells as a sufficient body of evidence regarding latency reversal in myeloid cells is lacking. The immunomodulatory LRA 2.0 approaches we describe include pattern recognition receptor agonists, immune checkpoint inhibitors, non-canonical NF-kB stimulation, and transient CD8+ lymphocyte depletion, along with promising combination strategies. We highlight recent studies demonstrating robust latency reversal in nonhuman primate models. While significant strides have been made in terms of virus reactivation from latency, initial hopes for latency reversal alone to result in a reduction of infected cells, through viral cytopathic effect or an unboosted immune system, have not been realized and it seems clear that even effective latency reversal strategies will need to be paired with an approach that facilitates immune recognition and clearance of cells containing reactivated virus.
Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Linfocitos T CD4-Positivos , Infecciones por VIH/tratamiento farmacológico , Humanos , Viremia , Activación Viral , Latencia del VirusRESUMEN
Liver disease is a leading contributor to morbidity and mortality during HIV infection, despite the use of combination antiretroviral therapy (cART). The precise mechanisms of liver disease during HIV infection are poorly understood partially due to the difficulty in obtaining human liver samples as well as the presence of confounding factors (e.g. hepatitis co-infection, alcohol use). Utilizing the simian immunodeficiency virus (SIV) macaque model, a controlled study was conducted to evaluate the factors associated with liver inflammation and the impact of cART. We observed an increase in hepatic macrophages during untreated SIV infection that was associated with a number of inflammatory and fibrosis mediators (TNFα, CCL3, TGFß). Moreover, an upregulation in the macrophage chemoattractant factor CCL2 was detected in the livers of SIV-infected macaques that coincided with an increase in the number of activated CD16+ monocyte/macrophages and T cells expressing the cognate receptor CCR2. Expression of Mac387 on monocyte/macrophages further indicated that these cells recently migrated to the liver. The hepatic macrophage and T cell levels strongly correlated with liver SIV DNA levels, and were not associated with the levels of 16S bacterial DNA. Utilizing in situ hybridization, SIV-infected cells were found primarily within portal triads, and were identified as T cells. Microarray analysis identified a strong antiviral transcriptomic signature in the liver during SIV infection. In contrast, macaques treated with cART exhibited lower levels of liver macrophages and had a substantial, but not complete, reduction in their inflammatory profile. In addition, residual SIV DNA and bacteria 16S DNA were detected in the livers during cART, implicating the liver as a site on-going immune activation during antiretroviral therapy. These findings provide mechanistic insights regarding how SIV infection promotes liver inflammation through macrophage recruitment, with implications for in HIV-infected individuals.
Asunto(s)
Antirretrovirales/administración & dosificación , Inflamación/patología , Hígado/patología , Macrófagos/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Carga Viral , Animales , Antirretrovirales/farmacología , Recuento de Células , Células Cultivadas , Quimioterapia Combinada , Humanos , Inflamación/tratamiento farmacológico , Inflamación/virología , Hígado/inmunología , Hígado/virología , Macaca mulatta , Macrófagos/efectos de los fármacos , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Carga Viral/efectos de los fármacos , Carga Viral/inmunologíaRESUMEN
A significant challenge to HIV eradication is the elimination of viral reservoirs in germinal center (GC) T follicular helper (Tfh) cells. However, GCs are considered to be immune privileged for antiviral CD8 T cells. Here, we show a population of simian immunodeficiency virus (SIV)-specific CD8 T cells express CXCR5 (C-X-C chemokine receptor type 5, a chemokine receptor required for homing to GCs) and expand in lymph nodes (LNs) following pathogenic SIV infection in a cohort of vaccinated macaques. This expansion was greater in animals that exhibited superior control of SIV. The CXCR5+ SIV-specific CD8 T cells demonstrated enhanced polyfunctionality, restricted expansion of antigen-pulsed Tfh cells in vitro, and possessed a unique gene expression pattern related to Tfh and Th2 cells. The increase in CXCR5+ CD8 T cells was associated with the presence of higher frequencies of SIV-specific CD8 T cells in the GC. Following TCR-driven stimulation in vitro, CXCR5+ but not CXCR5- CD8 T cells generated both CXCR5+ as well as CXCR5- cells. However, the addition of TGF-ß to CXCR5- CD8 T cells induced a population of CXCR5+ CD8 T cells, suggesting that this cytokine may be important in modulating these CXCR5+ CD8 T cells in vivo. Thus, CXCR5+ CD8 T cells represent a unique subset of antiviral CD8 T cells that expand in LNs during chronic SIV infection and may play a significant role in the control of pathogenic SIV infection.
Asunto(s)
Linfocitos T CD8-positivos/fisiología , Centro Germinal/citología , Receptores CXCR5/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Enfermedad Crónica , Macaca mulatta , MasculinoRESUMEN
The major obstacle to human immunodeficiency type 1 (HIV-1) eradication is a reservoir of latently infected cells that persists despite long-term antiretroviral therapy (ART) and causes rapid viral rebound if treatment is interrupted. Type I interferons are immunomodulatory cytokines that induce antiviral factors and have been evaluated for the treatment of HIV-infected individuals, resulting in moderate reduction of viremia and inconclusive data about their effect on reservoir size. Here, we assessed the potential of pegylated IFN-α2a (pIFN-α2a) to reduce the viral reservoir in simian immunodeficiency virus (SIV)-infected, ART-treated rhesus macaques (RMs). We found that pIFN-α2a treatment of animals in which virus replication is effectively suppressed with ART is safe and well tolerated, as no major clinical side effects were observed. By monitoring the cellular immune response during this intervention, we established that pIFN-α2a administration is not associated with either CD4+ T cell depletion or increased immune activation. Importantly, we found that interferon-stimulated genes (ISGs) were significantly upregulated in IFN-treated RMs compared to control animals, confirming that pIFN-α2a is bioactive in vivo To evaluate the effect of pIFN-α2a administration on the viral reservoir in CD4+ T cells, we performed cell-associated proviral SIV DNA measurements in multiple tissues and assessed levels of replication-competent virus by a quantitative viral outgrowth assay (QVOA). These analyses failed to reveal any significant difference in reservoir size between IFN-treated and control animals. In summary, our data suggest that short-term type I interferon treatment in combination with suppressive ART is not sufficient to induce a significant reduction of the viral reservoir in SIV-infected RMs.IMPORTANCE The potential of type I interferons to reduce the viral reservoir has been recently studied in clinical trials in HIV-infected humans. However, given the lack of mechanistic data and the potential for safety concerns, a more comprehensive testing of IFN treatment in vivo in SIV-infected RMs is critical to provide rationale for further development of this intervention in humans. Utilizing the SIV/RM model in which virus replication is suppressed with ART, we addressed experimental limitations of previous human studies, in particular the lack of a control group and specimen sampling limited to blood. Here, we show by rigorous testing of blood and lymphoid tissues that virus replication and reservoir size were not significantly affected by pIFN-α2a treatment in SIV-infected, ART-treated RMs. This suggests that intensified and/or prolonged IFN treatment regimens, possibly in combination with other antilatency agents, are necessary to effectively purge the HIV/SIV reservoir under ART.
Asunto(s)
Antivirales/farmacología , Interferón-alfa/farmacología , Polietilenglicoles/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Linfocitos T/virología , Viremia/virología , Replicación Viral/efectos de los fármacos , Animales , Células Cultivadas , Macaca mulatta , Masculino , Proteínas Recombinantes/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Carga Viral/efectos de los fármacos , Viremia/tratamiento farmacológicoRESUMEN
A major barrier to human immunodeficiency virus (HIV) eradication is the long-term persistence of latently infected CD4+ T cells harboring integrated replication-competent virus. It has been proposed that the homeostatic proliferation of these cells drives long-term reservoir persistence in the absence of virus reactivation, thus avoiding cell death due to either virus-mediated cytopathicity or immune effector mechanisms. Here, we conducted an experimental depletion of CD4+ T cells in eight antiretroviral therapy (ART)-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) to determine whether the homeostatically driven CD4+ T-cell proliferation that follows CD4+ T-cell depletion results in reactivation of latent virus and/or expansion of the virus reservoir. After administration of the CD4R1 antibody, we observed a CD4+ T cell depletion of 65 to 89% in peripheral blood and 20 to 50% in lymph nodes, followed by a significant increase in CD4+ T cell proliferation during CD4+ T cell reconstitution. However, this CD4+ T cell proliferation was not associated with detectable increases in viremia, indicating that the homeostatic activation of CD4+ T cells is not sufficient to induce virus reactivation from latently infected cells. Interestingly, the homeostatic reconstitution of the CD4+ T cell pool was not associated with significant changes in the number of circulating cells harboring SIV DNA compared to results for the first postdepletion time point. This study indicates that, in ART-treated SIV-infected RMs, the homeostasis-driven CD4+ T-cell proliferation that follows experimental CD4+ T-cell depletion occurs in the absence of detectable reactivation of latent virus and does not increase the size of the virus reservoir as measured in circulating cells.IMPORTANCE Despite successful suppression of HIV replication with antiretroviral therapy, current treatments are unable to eradicate the latent virus reservoir, and treatment interruption almost invariably results in the reactivation of HIV even after decades of virus suppression. Homeostatic proliferation of latently infected cells is one mechanism that could maintain the latent reservoir. To understand the impact of homeostatic mechanisms on virus reactivation and reservoir size, we experimentally depleted CD4+ T cells in ART-treated SIV-infected rhesus macaques and monitored their homeostatic rebound. We find that depletion-induced proliferation of CD4+ T cells is insufficient to reactivate the viral reservoir in vivo Furthermore, the proportion of SIV DNA+ CD4+ T cells remains unchanged during reconstitution, suggesting that the reservoir is resistant to this mechanism of expansion at least in this experimental system. Understanding how T cell homeostasis impacts latent reservoir longevity could lead to the development of new treatment paradigms aimed at curing HIV infection.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Proliferación Celular/fisiología , Depleción Linfocítica/métodos , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Activación Viral/fisiología , Latencia del Virus/fisiología , Replicación Viral/fisiología , Animales , Antirretrovirales/farmacología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Carga Viral , ViremiaRESUMEN
Worldwide, nearly two million children are infected with human immunodeficiency virus (HIV), with breastfeeding accounting for the majority of contemporary HIV transmissions. Antiretroviral therapy (ART) has reduced HIV-related morbidity and mortality but is not curative. The main barrier to a cure is persistence of latent HIV in long-lived reservoirs. However, our understanding of the cellular and anatomic sources of the HIV reservoir during infancy and childhood is limited. Here, we developed a pediatric model of ART suppression in orally simian immunodeficiency virus (SIV)-infected rhesus macaque (RM) infants, with measurement of virus persistence in blood and tissues after 6 to 9 months of ART. Cross-sectional analyses were conducted to compare SIV RNA and DNA levels in adult and infant RMs naive to treatment and on ART. We demonstrate efficient viral suppression following ART initiation in SIV-infected RM infants with sustained undetectable plasma viral loads in the setting of heterogeneous penetration of ART into lymphoid and gastrointestinal tissues and low drug levels in the brain. We further show reduction in SIV RNA and DNA on ART in lymphoid tissues of both infant and adult RMs but stable (albeit low) levels of SIV RNA and DNA in the brains of viremic and ART-suppressed infants. Finally, we report a large contribution of naive CD4+ T cells to the total CD4 reservoir of SIV in blood and lymph nodes of ART-suppressed RM infants that differs from what we show in adults. These results reveal important aspects of HIV/SIV persistence in infants and provide insight into strategic targets for cure interventions in a pediatric population.IMPORTANCE While antiretroviral therapy (ART) can reduce HIV replication, the virus cannot be eradicated from an infected individual, and our incomplete understanding of HIV persistence in reservoirs greatly complicates the generation of a cure for HIV infection. Given the immaturity of the infant immune system, it is critically important to study HIV reservoirs specifically in this population. Here, we established a pediatric animal model to simulate breastfeeding transmission and study SIV reservoirs in rhesus macaque (RM) infants. Our study demonstrates that ART can be safely administered to infant RMs for prolonged periods and that it efficiently controls viral replication in this model. SIV persistence was shown in blood and tissues, with similar anatomic distributions of SIV reservoirs in infant and adult RMs. However, in the peripheral blood and lymph nodes, a greater contribution of the naive CD4+ T cells to the SIV reservoir was observed in infants than in adults.
Asunto(s)
Terapia Antirretroviral Altamente Activa/efectos adversos , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Síndrome de Inmunodeficiencia Adquirida del Simio/sangre , Virus de la Inmunodeficiencia de los Simios/aislamiento & purificación , Carga Viral/efectos de los fármacos , Animales , Recuento de Linfocito CD4 , Estudios Transversales , Reservorios de Enfermedades , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/transmisión , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiologíaRESUMEN
Current HIV therapy is not curative regardless of how soon after infection it is initiated or how long it is administered, and therapy interruption almost invariably results in robust viral rebound. Human immunodeficiency virus persistence is therefore the major obstacle to a cure for AIDS. The testing and implementation of novel yet unproven approaches to HIV eradication that could compromise the health status of HIV-infected individuals might not be ethically warranted. Therefore, adequate in vitro and in vivo evidence of efficacy is needed to facilitate the clinical implementation of promising strategies for an HIV cure. Animal models of HIV infection have a strong and well-documented history of bridging the gap between laboratory discoveries and eventual clinical implementation. More recently, animal models have been developed and implemented for the in vivo evaluation of novel HIV cure strategies. In this article, we review the recent progress in this rapidly moving area of research, focusing on the two most promising model systems: humanized mice and nonhuman primates.
Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Modelos Animales de Enfermedad , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH/fisiología , Latencia del Virus/efectos de los fármacos , Animales , VIH/efectos de los fármacos , Humanos , PrimatesRESUMEN
UNLABELLED: Treatment of human immunodeficiency virus (HIV) infection with antiretroviral therapy (ART) has significantly improved prognosis. Unfortunately, interruption of ART almost invariably results in viral rebound, attributed to a pool of long-lived, latently infected cells. Based on their longevity and proliferative potential, CD4(+) T memory stem cells (TSCM) have been proposed as an important site of HIV persistence. In a previous study, we found that in simian immunodeficiency virus (SIV)-infected rhesus macaques (RM), CD4(+) TSCM are preserved in number but show (i) a decrease in the frequency of CCR5(+) cells, (ii) an expansion of the fraction of proliferating Ki-67(+) cells, and (iii) high levels of SIV DNA. To understand the impact of ART on both CD4(+) TSCM homeostasis and virus persistence, we conducted a longitudinal analysis of these cells in the blood and lymph nodes of 25 SIV-infected RM. We found that ART induced a significant restoration of CD4(+) CCR5(+) TSCM both in blood and in lymph nodes and a reduction in the fraction of proliferating CD4(+) Ki-67(+) TSCM in blood (but not lymph nodes). Importantly, we found that the level of SIV DNA in CD4(+) transitional memory (TTM) and effector memory (TEM) T cells declined â¼100-fold after ART in both blood and lymph nodes, while the level of SIV DNA in CD4(+) TSCM and central memory T cells (TCM-) did not significantly change. These data suggest that ART is effective at partially restoring CD4(+) TSCM homeostasis, and the observed stable level of virus in TSCM supports the hypothesis that these cells are a critical contributor to SIV persistence. IMPORTANCE: Understanding the roles of various CD4(+) T cell memory subsets in immune homeostasis and HIV/SIV persistence during antiretroviral therapy (ART) is critical to effectively treat and cure HIV infection. T memory stem cells (TSCM) are a unique memory T cell subset with enhanced self-renewal capacity and the ability to differentiate into other memory T cell subsets, such as central and transitional memory T cells (TCM and TTM, respectively). CD4(+) TSCM are disrupted but not depleted during pathogenic SIV infection. We find that ART is partially effective at restoring CD4(+) TSCM homeostasis and that SIV DNA harbored within this subset contracts more slowly than virus harbored in shorter-lived subsets, such as TTM and effector memory (TEM). Because of their ability to persist long-term in an individual, understanding the dynamics of virally infected CD4(+) TSCM during suppressive ART is important for future therapeutic interventions aimed at modulating immune activation and purging the HIV reservoir.
Asunto(s)
Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Homeostasis/fisiología , Memoria Inmunológica/inmunología , Enfermedades de los Primates/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Replicación Viral/efectos de los fármacos , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , ADN Viral/genética , Humanos , Memoria Inmunológica/efectos de los fármacos , Macaca mulatta , Enfermedades de los Primates/inmunología , Enfermedades de los Primates/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios , Células Madre/efectos de los fármacos , Células Madre/inmunología , Células Madre/virología , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/virología , Carga ViralRESUMEN
UNLABELLED: Macrophages are target cells of HIV/SIV infection that may play a role in AIDS pathogenesis and contribute to the long-lived reservoir of latently infected cells during antiretroviral therapy (ART). In previous work, we and others have shown that during pathogenic SIV infection of rhesus macaques (RMs), rapid disease progression is associated with high levels of in vivo macrophage infection. In contrast, during nonpathogenic SIV infection of sooty mangabeys (SMs), neither spontaneous nor experimental CD4(+) T cell depletion results in substantial levels of in vivo macrophage infection. To test the hypothesis that SM macrophages are intrinsically more resistant to SIV infection than RM macrophages, we undertook an in vitro comparative assessment of monocyte-derived macrophages (MDMs) from both nonhuman primate species. Using the primary isolate SIVM949, which replicates well in lymphocytes from both RMs and SMs, we found that infection of RM macrophages resulted in persistent SIV-RNA production while SIV-RNA levels in SM macrophage cultures decreased 10- to 100-fold over a similar temporal course of in vitro infection. To explore potential mechanisms responsible for the lower levels of SIV replication and/or production in macrophages from SMs we comparatively assessed, in the two studied species, the expression of the SIV coreceptor as well as the expression of a number of host restriction factors. While previous studies showed that SM monocytes express lower levels of CCR5 (but not CD4) than RM monocytes, the level of CCR5 expression in MDMs was similar in the two species. Interestingly, we found that SM macrophages exhibited a significantly greater increase in the expression of tetherin (P = 0.003) and TRIM22 (P = 0.0006) in response to alpha interferon stimulation and increased expression of multiple host restriction factors in response to lipopolysaccharide stimulation and exposure to SIV. Overall, these findings confirm, in an in vitro infection system, that SM macrophages are relatively more resistant to SIV infection compared to RM macrophages, and suggest that a combination of entry and postentry restriction mechanisms may protect these cells from productive SIV infection. IMPORTANCE: This manuscript represents the first in vivo comparative analysis of monocyte-derived macrophages (MDMs) between rhesus macaques, i.e., experimental SIV hosts in which the infection is pathogenic and macrophages can be infected, and sooty mangabeys, i.e., natural SIV hosts in which the infection is nonpathogenic and macrophages are virtually never infected in vivo. This study demonstrates that mangabey-derived MDMs are more resistant to SIV infection in vitro compared to macaque-derived MDMs, and provides a potential explanation for this observation by showing increased expression of specific retrovirus restriction factors in mangabey-derived macrophages. Overall, this study is important as it contributes to our understanding of why SIV infection is nonpathogenic in sooty mangabeys while it is pathogenic in macaques, and is consistent with a pathogenic role for in vivo macrophage infection during pathogenic lentiviral infection.
Asunto(s)
Cercocebus atys/virología , Macaca mulatta/virología , Macrófagos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Replicación Viral/genética , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Cercocebus atys/inmunología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Regulación de la Expresión Génica , Especificidad del Huésped , Interacciones Huésped-Patógeno , Interferón-alfa/farmacología , Lipopolisacáridos/farmacología , Activación de Linfocitos , Macaca mulatta/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Macrófagos/virología , Cultivo Primario de Células , Receptores CCR5/genética , Receptores CCR5/inmunología , Transducción de Señal , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Carga ViralRESUMEN
Despite many advances in AIDS research, a cure for HIV infection remains elusive. Here, we performed autologous hematopoietic stem cell transplantation (HSCT) in three Simian/Human Immunodeficiency Virus (SHIV)-infected, antiretroviral therapy (ART)-treated rhesus macaques (RMs) using HSCs collected prior to infection and compared them to three SHIV-infected, ART-treated, untransplanted control animals to assess the effect of conditioning and autologous HSCT on viral persistence. As expected, ART drastically reduced virus replication, below 100 SHIV-RNA copies per ml of plasma in all animals. After several weeks on ART, experimental RMs received myeloablative total body irradiation (1080 cGy), which resulted in the depletion of 94-99% of circulating CD4+ T-cells, and low to undetectable SHIV-DNA levels in peripheral blood mononuclear cells. Following HSC infusion and successful engraftment, ART was interrupted (40-75 days post-transplant). Despite the observed dramatic reduction of the peripheral blood viral reservoir, rapid rebound of plasma viremia was observed in two out of three transplanted RMs. In the third transplanted animal, plasma SHIV-RNA and SHIV DNA in bulk PBMCs remained undetectable at week two post-ART interruption. No further time-points could be assessed as this animal was euthanized for clinical reasons; however, SHIV-DNA could be detected in this animal at necropsy in sorted circulating CD4+ T-cells, spleen and lymph nodes but not in the gastro-intestinal tract or tonsils. Furthermore, SIV DNA levels post-ART interruption were equivalent in several tissues in transplanted and control animals. While persistence of virus reservoir was observed despite myeloablation and HSCT in the setting of short term ART, this experiment demonstrates that autologous HSCT can be successfully performed in SIV-infected ART-treated RMs offering a new experimental in vivo platform to test innovative interventions aimed at curing HIV infection in humans.