Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Neuroinflammation ; 21(1): 7, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178159

RESUMEN

BACKGROUND: Widescale evidence points to the involvement of glia and immune pathways in the progression of Alzheimer's disease (AD). AD-associated iPSC-derived glial cells show a diverse range of AD-related phenotypic states encompassing cytokine/chemokine release, phagocytosis and morphological profiles, but to date studies are limited to cells derived from PSEN1, APOE and APP mutations or sporadic patients. The aim of the current study was to successfully differentiate iPSC-derived microglia and astrocytes from patients harbouring an AD-causative PSEN2 (N141I) mutation and characterise the inflammatory and morphological profile of these cells. METHODS: iPSCs from three healthy control individuals and three familial AD patients harbouring a heterozygous PSEN2 (N141I) mutation were used to derive astrocytes and microglia-like cells and cell identity and morphology were characterised through immunofluorescent microscopy. Cellular characterisation involved the stimulation of these cells by LPS and Aß42 and analysis of cytokine/chemokine release was conducted through ELISAs and multi-cytokine arrays. The phagocytic capacity of these cells was then indexed by the uptake of fluorescently-labelled fibrillar Aß42. RESULTS: AD-derived astrocytes and microglia-like cells exhibited an atrophied and less complex morphological appearance than healthy controls. AD-derived astrocytes showed increased basal expression of GFAP, S100ß and increased secretion and phagocytosis of Aß42 while AD-derived microglia-like cells showed decreased IL-8 secretion compared to healthy controls. Upon immunological challenge AD-derived astrocytes and microglia-like cells showed exaggerated secretion of the pro-inflammatory IL-6, CXCL1, ICAM-1 and IL-8 from astrocytes and IL-18 and MIF from microglia. CONCLUSION: Our study showed, for the first time, the differentiation and characterisation of iPSC-derived astrocytes and microglia-like cells harbouring a PSEN2 (N141I) mutation. PSEN2 (N141I)-mutant astrocytes and microglia-like cells presented with a 'primed' phenotype characterised by reduced morphological complexity, exaggerated pro-inflammatory cytokine secretion and altered Aß42 production and phagocytosis.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Astrocitos/metabolismo , Microglía/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Interleucina-8/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Citocinas/metabolismo , Fenotipo , Péptidos beta-Amiloides/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34769512

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive motor neurodegenerative disease that currently has no cure and has few effective treatments. On a cellular level, ALS manifests through significant changes in the proper function of astrocytes, microglia, motor neurons, and other central nervous system (CNS) cells, leading to excess neuroinflammation and neurodegeneration. Damage to the upper and lower motor neurons results in neural and muscular dysfunction, leading to death most often due to respiratory paralysis. A new therapeutic strategy is targeting glial cells affected by senescence, which contribute to motor neuron degeneration. Whilst this new therapeutic approach holds much promise, it is yet to be trialled in ALS-relevant preclinical models and needs to be designed carefully to ensure selectivity. This review summarizes the pathways involved in ALS-related senescence, as well as known senolytic agents and their mechanisms of action, all of which may inform strategies for ALS-focused drug discovery efforts.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Senoterapéuticos/farmacología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología
3.
Eur J Pharmacol ; 914: 174667, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34863711

RESUMEN

Antagonists of the P2X7 receptor (P2X7R) have the potential to treat diseases where neuroinflammation is present such as depression, chronic pain and Alzheimer's disease. We recently developed a structural hybrid (C1; 1-((adamantan-1-yl)methyl)-2-cyano-3-(quinolin-5-yl)guanidine) of a purported competitive P2X7R antagonist (C2; 2-cyano-1-((1S)-1-phenylethyl)-3-(quinolin-5-yl)guanidine) and a likely negative allosteric modulator (NAM) of the P2X7R (C3; N-((adamantan-1-yl)methyl)-2-chloro-5-methoxybenzamide). Here we aimed to pharmacologically characterize C1, to gain insights into how select structural components impact antagonist interaction with the P2X7R. A second aim was to examine the role of the peptide LL-37, an apparent activator of the P2X7R, and compare the ability of multiple P2X7R antagonists to block its effects. Compounds 1, 2 and 3 were characterised using washout, Schild and receptor protection studies, all using dye uptake assays in HEK293 cells expressing the P2X7R. LL-37 was examined in the same HEK293 cells and THP-1 monocytes. Compounds 2 and 3 acted as a BzATP-competitive antagonist and NAM of the P2X7R respectively. Compound 1 was a slowly reversible NAM of the P2X7R suggesting the incorporation of an appropriately positioned adamantane promotes binding to the allosteric site of the P2X7R. LL-37 was shown to potentiate the ability of ATP to induce dye uptake at low concentrations (1-3 µg mL-1) or induce dye uptake alone at higher concentrations (10-20 µg mL-1). None of the P2X7R antagonists studied were able to block LL-37-induced dye uptake bringing in to question the ability of current P2X7R antagonists to inhibit the inflammatory action of LL-37 in vivo.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Enfermedades Neuroinflamatorias , Antagonistas del Receptor Purinérgico P2X , Receptores Purinérgicos P2X7/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Desarrollo de Medicamentos , Células HEK293 , Humanos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Porinas/metabolismo , Agonistas Purinérgicos/farmacología , Antagonistas del Receptor Purinérgico P2X/clasificación , Antagonistas del Receptor Purinérgico P2X/farmacología , Proteínas Modificadoras de la Actividad de Receptores/metabolismo , Células THP-1 , Catelicidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA