Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Psychiatry ; 26(12): 7130-7140, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34526669

RESUMEN

The dentate gyrus is one of the only brain regions that continues its development after birth in rodents. Adolescence is a very sensitive period during which cognitive competences are programmed. We investigated the role of dentate granule neurons (DGNs) born during adolescence in spatial memory and compared them with those generated earlier in life (in embryos or neonates) or during adulthood by combining functional imaging, retroviral and optogenetic tools to tag and silence DGNs. By imaging DGNs expressing Zif268, a proxy for neuronal activity, we found that neurons generated in adolescent rats (and not embryos or neonates) are transiently involved in spatial memory processing. In contrast, adult-generated DGNs are recruited at a later time point when animals are older. A causal relationship between the temporal origin of DGNs and spatial memory was confirmed by silencing DGNs in behaving animals. Our results demonstrate that the emergence of spatial memory depends on neurons born during adolescence, a function later assumed by neurons generated during adulthood.


Asunto(s)
Giro Dentado , Memoria Espacial , Animales , Giro Dentado/fisiología , Neuronas/fisiología , Ratas , Memoria Espacial/fisiología
2.
Nature ; 539(7630): 555-559, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27828947

RESUMEN

Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.


Asunto(s)
Cannabinoides/efectos adversos , Trastornos de la Memoria/inducido químicamente , Memoria/efectos de los fármacos , Memoria/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Cannabinoides/metabolismo , Respiración de la Célula/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Transporte de Electrón/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Trastornos de la Memoria/enzimología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , NADH Deshidrogenasa/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
3.
Brain Behav Immun ; 70: 325-334, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29548998

RESUMEN

Ciliary neurotrophic factor (CNTF) potently decreases food intake and body weight in diet-induced obese mice by acting through neuronal circuits and pathways located in the arcuate nucleus (ARC) of the hypothalamus. CNTF also exerts pro-inflammatory actions within the brain. Here we tested whether CNTF modifies energy balance by inducing inflammatory responses in the ARC and whether these effects depend upon the mechanistic target of rapamycin complex 1 (mTORC1) pathway, which regulates both energy metabolism and inflammation. To this purpose, chow- and high fat diet (HFD)- fed mice lacking the S6 kinase 1 (S6K1-/-), a downstream target of mTORC1, and their wild-type (WT) littermates received 12 days continuous intracerebroventricular (icv) infusion of the CNTF analogue axokine (CNTFAx15). Behavioral, metabolic and molecular effects were evaluated. Central chronic administration of CNTFAx15 decreased body weight and feed efficiency in WT mice only, when fed HFD, but not chow. These metabolic effects correlated with increased number of iba-1 positive microglia specifically in the ARC and were accompanied by significant increases of IL-1ß and TNF-α mRNA expression in the hypothalamus. Hypothalamic iNOS and SOCS3 mRNA, molecular markers of pro-inflammatory response, were also increased by CNTFAx15. All these changes were absent in S6K1-/- mice. This study reveals that CNTFAx15 requires a functional S6K1 to modulate energy balance and hypothalamic inflammation in a diet-dependent fashion. Further investigations should determine whether S6K1 is a suitable target for the treatment of pathologies characterized by a high neuroinflammatory state.


Asunto(s)
Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/fisiología , Proteínas Quinasas S6 Ribosómicas 70-kDa/fisiología , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Peso Corporal , Dieta Alta en Grasa , Ingestión de Alimentos , Metabolismo Energético , Homeostasis , Hipotálamo/metabolismo , Hipotálamo/fisiología , Leptina , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/fisiología , Neuroglía/fisiología , Neuroinmunomodulación/fisiología , Obesidad/fisiopatología , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética
4.
Prog Neurobiol ; 219: 102364, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36244613

RESUMEN

Hippocampal adult neurogenesis is involved in many memory processes from learning, to remembering and forgetting. However, whether or not the stimulation of adult neurogenesis is a sufficient condition to improve memory performance remains unclear. Here, we developed and validated, using ex-vivo electrophysiology, a chemogenetic approach that combines selective tagging and activation of discrete adult-born neuron populations. Then we demonstrated that, in rats, this activation can improve accuracy and strength of remote memory. These results show that stimulation of adult-born neuron activity can counteract the natural fading of memory traces that occurs with the passage of time. This opens up new avenues for treating memory problems that may arise over time.


Asunto(s)
Memoria a Largo Plazo , Neurogénesis , Ratas , Animales , Neurogénesis/fisiología , Memoria a Largo Plazo/fisiología , Memoria/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología
5.
Sci Rep ; 12(1): 6017, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35411016

RESUMEN

Microbiome-based therapies for inflammatory bowel diseases offer a novel and promising therapeutic approach. The human commensal bacteria of the species Christensenella minuta (C. minuta) have been reported consistently missing in patients affected by Crohn's disease (CD) and have been documented to induce anti-inflammatory effects in human epithelial cells, supporting their potential as a novel biotherapy. This work aimed at selecting the most promising strain of C. minuta for future development as a clinical candidate for CD therapy. Here, we describe a complete screening process combining in vitro and in vivo assays to conduct a rational selection of a live strain of C. minuta with strong immunomodulatory properties. Starting from a collection of 32 strains, a panel of in vitro screening assays was used to narrow it down to five preclinical candidates that were further screened in vivo in an acute TNBS-induced rat colitis model. The most promising candidate was validated in vivo in two mouse models of colitis. The validated clinical candidate strain, C. minuta DSM 33715, was then fully characterized. Hence, applying a rationally designed screening algorithm, a novel strain of C. minuta was successfully identified as the most promising clinical candidate for CD.


Asunto(s)
Colitis , Enfermedad de Crohn , Animales , Terapia Biológica , Clostridiales , Colitis/tratamiento farmacológico , Colitis/terapia , Enfermedad de Crohn/tratamiento farmacológico , Humanos , Ratones , Ratas
6.
Microbiome ; 10(1): 24, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115054

RESUMEN

BACKGROUND: There is a growing interest in using gut commensal bacteria as "next generation" probiotics. However, this approach is still hampered by the fact that there are few or no strains available for specific species that are difficult to cultivate. Our objective was to adapt flow cytometry and cell sorting to be able to detect, separate, isolate, and cultivate new strains of commensal species from fecal material. We focused on the extremely oxygen sensitive (EOS) species Faecalibacterium prausnitzii and the under-represented, health-associated keystone species Christensenella minuta as proof-of-concept. RESULTS: A BD Influx® cell sorter was equipped with a glovebox that covered the sorting area. This box was flushed with nitrogen to deplete oxygen in the enclosure. Anaerobic conditions were maintained during the whole process, resulting in only minor viability loss during sorting and culture of unstained F. prausnitzii strains ATCC 27766, ATCC 27768, and DSM 17677. We then generated polyclonal antibodies against target species by immunizing rabbits with heat-inactivated bacteria. Two polyclonal antibodies were directed against F. prausnitzii type strains that belong to different phylogroups, whereas one was directed against C. minuta strain DSM 22607. The specificity of the antibodies was demonstrated by sorting and sequencing the stained bacterial fractions from fecal material. In addition, staining solutions including LIVE/DEAD™ BacLight™ Bacterial Viability staining and polyclonal antibodies did not severely impact bacterial viability while allowing discrimination between groups of strains. Finally, we combined these staining strategies as well as additional criteria based on bacterial shape for C. minuta and were able to detect, isolate, and cultivate new F. prausnitzii and C. minuta strains from healthy volunteer's fecal samples. CONCLUSIONS: Targeted cell-sorting under anaerobic conditions is a promising tool for the study of fecal microbiota. It gives the opportunity to quickly analyze microbial populations, and can be used to sort EOS and/or under-represented strains of interest using specific antibodies, thus opening new avenues for culture experiments. Video abstract.


Asunto(s)
Microbioma Gastrointestinal , Anaerobiosis , Animales , Bacterias/metabolismo , Faecalibacterium prausnitzii , Citometría de Flujo , Conejos
7.
Front Med (Lausanne) ; 8: 716266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458291

RESUMEN

During the last decade, a plethora of novel therapies containing live microorganisms as active substance(s) has emerged with the aim to treat, prevent, or cure diseases in human beings. Both the Food and Drug Administration (FDA) and the European Directorate for the Quality of Medicines and Health Care (EDQM) codified these biotherapies as Live Biotherapeutic Products (LBPs). While these innovative products offer healthcare opportunities, they also represent a challenge for developers who need to set the most suitable designs for non-clinical and clinical studies in order to demonstrate a positive benefit/risk ratio through relevant quality, safety, and efficacy data that are expected by the drug competent authorities. This article describes how YSOPIA Bioscience, supported by the Pharmabiotic Research Institute (PRI), addressed the regulatory challenges during the early development phase of their single-strain LBP, Xla1, in order to obtain the necessary authorizations to bring this drug to the clinical stage.

8.
Cells ; 10(4)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917566

RESUMEN

Obesity is associated with gut microbiota dysbiosis, characterized by a high Firmicutes/Bacteroidetes ratio. Gut-dwelling bacteria of the Christensenellaceae family have been proposed to act as keystones of the human gut ecosystem and to prevent adipogenesis. The objectives of the present study were to demonstrate the antiobesity potential of a new strain of Christensenella minuta in preclinical models and explore related mechanisms of action. The antiobesity potential of C. minuta DSM33407 was assessed in a diet-induced obesity mouse model. Changes in hepatic lipid metabolism were explored using targeted transcriptomics. Effects on gut microbiota were further assessed in a humanized Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) model inoculated with obese fecal samples. Shotgun metagenomics was applied to study microbial community structures in both models. C. minuta DSM33407 protected from diet-induced obesity and regulated associated metabolic markers such as glycemia and leptin. It also regulated hepatic lipid metabolism through a strong inhibition of de novo lipogenesis and maintained gut epithelial integrity. In the humanized SHIME® model, these effects were associated with modulations of the intestinal microbiota characterized by a decreased Firmicutes/Bacteroidetes ratio. These data indicate that C. minuta DSM33407 is a convincing therapeutic candidate for the management of obesity and associated metabolic disorders.


Asunto(s)
Terapia Biológica , Clostridiales/aislamiento & purificación , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/terapia , Obesidad/microbiología , Obesidad/terapia , Animales , Biodiversidad , Biomarcadores/metabolismo , Clostridiales/clasificación , Dieta , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Heces/microbiología , Microbioma Gastrointestinal , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Filogenia
9.
Nat Commun ; 12(1): 1778, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741954

RESUMEN

Memory reconsolidation, the process by which memories are again stabilized after being reactivated, has strengthened the idea that memory stabilization is a highly plastic process. To date, the molecular and cellular bases of reconsolidation have been extensively investigated particularly within the hippocampus. However, the role of adult neurogenesis in memory reconsolidation is unclear. Here, we combined functional imaging, retroviral and chemogenetic approaches in rats to tag and manipulate different populations of rat adult-born neurons. We find that both mature and immature adult-born neurons are activated by remote memory retrieval. However, only specific silencing of the adult-born neurons immature during learning impairs remote memory retrieval-induced reconsolidation. Hence, our findings show that adult-born neurons immature during learning are required for the maintenance and update of remote memory reconsolidation.


Asunto(s)
Aprendizaje/fisiología , Consolidación de la Memoria/fisiología , Memoria a Largo Plazo/fisiología , Neuronas/fisiología , Animales , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Microscopía Confocal , Neuronas/metabolismo , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Ratas Sprague-Dawley , Factores de Tiempo
10.
Cell Rep ; 37(2): 109800, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644574

RESUMEN

Hypothalamic pro-opiomelanocortin (POMC) neurons are known to trigger satiety. However, these neuronal cells encompass heterogeneous subpopulations that release γ-aminobutyric acid (GABA), glutamate, or both neurotransmitters, whose functions are poorly defined. Using conditional mutagenesis and chemogenetics, we show that blockade of the energy sensor mechanistic target of rapamycin complex 1 (mTORC1) in POMC neurons causes hyperphagia by mimicking a cellular negative energy state. This is associated with decreased POMC-derived anorexigenic α-melanocyte-stimulating hormone and recruitment of POMC/GABAergic neurotransmission, which is restrained by cannabinoid type 1 receptor signaling. Electrophysiology and optogenetic studies further reveal that pharmacological blockade of mTORC1 simultaneously activates POMC/GABAergic neurons and inhibits POMC/glutamatergic ones, implying that the functional specificity of these subpopulations relies on mTORC1 activity. Finally, POMC neurons with different neurotransmitter profiles possess specific molecular signatures and spatial distribution. Altogether, these findings suggest that mTORC1 orchestrates the activity of distinct POMC neurons subpopulations to regulate feeding behavior.


Asunto(s)
Regulación del Apetito , Conducta Alimentaria , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Inhibición Neural , Núcleo Hipotalámico Paraventricular/metabolismo , Proopiomelanocortina/metabolismo , Animales , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proopiomelanocortina/genética , Transducción de Señal
11.
Nat Commun ; 10(1): 4991, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676751

RESUMEN

Overinhibition is assumed one of the main causes of cognitive deficits (e.g. memory impairment) in mouse models of Down syndrome (DS). Yet the mechanisms that drive such exaggerated synaptic inhibition and their behavioral effects remain unclear. Here we report the existence of bidirectional alterations to the synaptic inhibition on CA1 pyramidal cells in the Ts2Cje mouse model of DS which are associated to impaired spatial memory. Furthermore, we identify triplication of the kainate receptor (KAR) encoding gene Grik1 as the cause of these phenotypes. Normalization of Grik1 dosage in Ts2Cje mice specifically restored spatial memory and reversed the bidirectional alterations to CA1 inhibition, but not the changes in synaptic plasticity or the other behavioral modifications observed. We propose that modified information gating caused by disturbed inhibitory tone rather than generalized overinhibition underlies some of the characteristic cognitive deficits in DS.


Asunto(s)
Región CA1 Hipocampal/fisiología , Dendritas/fisiología , Síndrome de Down/fisiopatología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Memoria Espacial/fisiología , Animales , Región CA1 Hipocampal/citología , Modelos Animales de Enfermedad , Síndrome de Down/patología , Femenino , Humanos , Masculino , Ratones
12.
Mol Metab ; 28: 151-159, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31420305

RESUMEN

OBJECTIVE: The hypothalamic paraventricular nucleus (PVN) is a key target of the melanocortin system, which orchestrates behavioral and metabolic responses depending on energy availability. The mechanistic target of rapamycin complex 1 (mTORC1) and the endocannabinoid type 1 receptor (CB1R) pathways are two key signaling systems involved in the regulation of energy balance whose activity closely depends upon energy availability. Here we tested the hypothesis that modulation of mTORC1 and CB1R signaling regulates excitatory glutamatergic inputs onto the PVN. METHODS: Patch-clamp recordings in C57BL/6J mice, in mice lacking the mTORC1 component Rptor or CB1R in pro-opio-melanocortin (POMC) neurons, combined with pharmacology targeting mTORC1, the melanocortin receptor type 4 (MC4R), or the endocannabinoid system under chow or a hypercaloric diet. RESULTS: Acute pharmacological inhibition of mTORC1 in C57BL/6J mice decreased glutamatergic inputs onto the PVN via a mechanism requiring modulation of MC4R, endocannabinoid 2-AG mobilization by PVN parvocellular neurons, and retrograde activation of presynaptic CB1R. Further electrophysiology studies using mice lacking mTORC1 activity or CB1R in POMC neurons indicated that the observed effects involved mTORC1 and CB1R-dependent regulation of glutamate release from POMC neurons. Finally, energy surfeit caused by hypercaloric high-fat diet feeding, rapidly and time-dependently altered the glutamatergic inputs onto parvocellular neurons and the ability of mTORC1 and CB1R signaling to modulate such excitatory activity. CONCLUSIONS: These findings pinpoint the relationship between mTORC1 and endocannabinoid-CB1R signaling in the regulation of the POMC-mediated glutamatergic inputs onto PVN parvocellular neurons and its rapid alteration in conditions favoring the development of obesity.


Asunto(s)
Ácido Glutámico/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Dieta Alta en Grasa , Ingestión de Energía/efectos de los fármacos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Cannabinoide CB1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Factores de Tiempo
13.
Trends Endocrinol Metab ; 26(10): 524-537, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26412154

RESUMEN

The endocannabinoid system (ECS) functions to adjust behavior and metabolism according to environmental changes in food availability. Its actions range from the regulation of sensory responses to the development of preference for the consumption of calorically-rich food and control of its metabolic handling. ECS activity is beneficial when access to food is scarce or unpredictable. However, when food is plentiful, the ECS favors obesity and metabolic disease. We review recent advances in understanding the roles of the ECS in energy balance, and discuss newly identified mechanisms of action that, after the withdrawal of first generation cannabinoid type 1 (CB1) receptor antagonists for the treatment of obesity, have made the ECS once again an attractive target for therapy.


Asunto(s)
Endocannabinoides/metabolismo , Enfermedades Metabólicas/metabolismo , Obesidad/metabolismo , Animales , Ingestión de Alimentos/fisiología , Humanos
14.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA