RESUMEN
RNA can serve as a template for DNA double-strand break repair in yeast cells, and Rad52, a member of the homologous recombination pathway, emerged as an important player in this process. However, the exact mechanism of how Rad52 contributes to RNA-dependent DSB repair remained unknown. Here, we report an unanticipated activity of yeast and human Rad52: inverse strand exchange, in which Rad52 forms a complex with dsDNA and promotes strand exchange with homologous ssRNA or ssDNA. We show that in eukaryotes, inverse strand exchange between homologous dsDNA and RNA is a distinctive activity of Rad52; neither Rad51 recombinase nor the yeast Rad52 paralog Rad59 has this activity. In accord with our in vitro results, our experiments in budding yeast provide evidence that Rad52 inverse strand exchange plays an important role in RNA-templated DSB repair in vivo.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , ARN de Hongos/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Moldes Genéticos , ADN de Hongos/genética , ADN de Cadena Simple/genética , Humanos , Mutación , Ácidos Nucleicos Heterodúplex , Unión Proteica , ARN de Hongos/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de TiempoRESUMEN
Replication protein A (RPA), a major eukaryotic ssDNA-binding protein, is essential for all metabolic processes that involve ssDNA, including DNA replication, repair, and damage signaling. To perform its functions, RPA binds ssDNA tightly. In contrast, it was presumed that RPA binds RNA weakly. However, recent data suggest that RPA may play a role in RNA metabolism. RPA stimulates RNA-templated DNA repair in vitro and associates in vivo with R-loops, the three-stranded structures consisting of an RNA-DNA hybrid and the displaced ssDNA strand. R-loops are common in the genomes of pro- and eukaryotes, including humans, and may play an important role in transcription-coupled homologous recombination and DNA replication restart. However, the mechanism of R-loop formation remains unknown. Here, we investigated the RNA-binding properties of human RPA and its possible role in R-loop formation. Using gel-retardation and RNA/DNA competition assays, we found that RPA binds RNA with an unexpectedly high affinity (KD ≈ 100 pm). Furthermore, RPA, by forming a complex with RNA, can promote R-loop formation with homologous dsDNA. In reconstitution experiments, we showed that human DNA polymerases can utilize RPA-generated R-loops for initiation of DNA synthesis, mimicking the process of replication restart in vivo These results demonstrate that RPA binds RNA with high affinity, supporting the role of this protein in RNA metabolism and suggesting a mechanism of genome maintenance that depends on RPA-mediated DNA replication restart.
Asunto(s)
Estructuras R-Loop , ARN/química , Proteína de Replicación A/química , ADN/biosíntesis , ADN/química , Replicación del ADN , Humanos , Unión Proteica , ARN/metabolismo , Proteína de Replicación A/metabolismoRESUMEN
RAD52 is a member of the homologous recombination (HR) pathway that is important for maintenance of genome integrity. While single RAD52 mutations show no significant phenotype in mammals, their combination with mutations in genes that cause hereditary breast cancer and ovarian cancer like BRCA1, BRCA2, PALB2 and RAD51C are lethal. Consequently, RAD52 may represent an important target for cancer therapy. In vitro, RAD52 has ssDNA annealing and DNA strand exchange activities. Here, to identify small molecule inhibitors of RAD52 we screened a 372,903-compound library using a fluorescence-quenching assay for ssDNA annealing activity of RAD52. The obtained 70 putative inhibitors were further characterized using biochemical and cell-based assays. As a result, we identified compounds that specifically inhibit the biochemical activities of RAD52, suppress growth of BRCA1- and BRCA2-deficient cells and inhibit RAD52-dependent single-strand annealing (SSA) in human cells. We will use these compounds for development of novel cancer therapy and as a probe to study mechanisms of DNA repair.
Asunto(s)
Antineoplásicos/farmacología , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína Recombinante y Reparadora de ADN Rad52/antagonistas & inhibidores , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Daño del ADN , Ensayos de Selección de Medicamentos Antitumorales , Técnicas de Silenciamiento del Gen , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52/químicaRESUMEN
The Holliday junction (HJ), a cross-shaped structure that physically links the two DNA helices, is a key intermediate in homologous recombination, DNA repair, and replication. Several helicase-like proteins are known to bind HJs and promote their branch migration (BM) by translocating along DNA at the expense of ATP hydrolysis. Surprisingly, the bacterial recombinase protein RecA and its eukaryotic homologue Rad51 also promote BM of HJs despite the fact they do not bind HJs preferentially and do not translocate along DNA. RecA/Rad51 plays a key role in DNA double-stranded break repair and homologous recombination. RecA/Rad51 binds to ssDNA and forms contiguous filaments that promote the search for homologous DNA sequences and DNA strand exchange. The mechanism of BM promoted by RecA/RAD51 is unknown. Here, we demonstrate that cycles of RecA/Rad51 polymerization and dissociation coupled with ATP hydrolysis drives the BM of HJs.
Asunto(s)
Adenosina Trifosfato/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , ADN Cruciforme/metabolismo , Proteínas de Unión al ADN/metabolismo , Multimerización de Proteína/fisiología , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , ADN Cruciforme/química , ADN Cruciforme/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , HumanosRESUMEN
Several proteins have been shown to catalyze branch migration (BM) of the Holliday junction, a key intermediate in DNA repair and recombination. Here, using joint molecules made by human RAD51 or Escherichia coli RecA, we find that the polarity of the displaced ssDNA strand of the joint molecules defines the polarity of BM of RAD54, BLM, RECQ1, and RuvAB. Our results demonstrate that RAD54, BLM, and RECQ1 promote BM preferentially in the 3'â5' direction, whereas RuvAB drives it in the 5'â3' direction relative to the displaced ssDNA strand. Our data indicate that the helicase activity of BM proteins does not play a role in the heterology bypass. Thus, RAD54 that lacks helicase activity is more efficient in DNA heterology bypass than BLM or REQ1 helicases. Furthermore, we demonstrate that the BLM helicase and BM activities require different protein stoichiometries, indicating that different complexes, monomers and multimers, respectively, are responsible for these two activities. These results define BM as a mechanistically distinct activity of DNA translocating proteins, which may serve an important function in DNA repair and recombination.
Asunto(s)
Reparación del ADN , ADN Cruciforme/química , Proteínas Nucleares/química , RecQ Helicasas/química , Proteínas Bacterianas/química , ADN Helicasas/química , Replicación del ADN , ADN Circular/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN , Pruebas de Enzimas , Proteínas de Escherichia coli/química , Humanos , Cinética , Magnesio/química , Plásmidos/química , Recombinación Genética , Proteína de Replicación A/químicaRESUMEN
Homologous recombination has a crucial function in the repair of DNA double-strand breaks and in faithful chromosome segregation. The mechanism of homologous recombination involves the search for homology and invasion of the ends of a broken DNA molecule into homologous duplex DNA to form a cross-stranded structure, a Holliday junction (HJ). A HJ is able to undergo branch migration along DNA, generating increasing or decreasing lengths of heteroduplex. In both prokaryotes and eukaryotes, the physical evidence for HJs, the key intermediate in homologous recombination, was provided by electron microscopy. In bacteria there are specialized enzymes that promote branch migration of HJs. However, in eukaryotes the identity of homologous recombination branch-migration protein(s) has remained elusive. Here we show that Rad54, a Swi2/Snf2 protein, binds HJ-like structures with high specificity and promotes their bidirectional branch migration in an ATPase-dependent manner. The activity seemed to be conserved in human and yeast Rad54 orthologues. In vitro, Rad54 has been shown to stimulate DNA pairing of Rad51, a key homologous recombination protein. However, genetic data indicate that Rad54 protein might also act at later stages of homologous recombination, after Rad51 (ref. 13). Novel DNA branch-migration activity is fully consistent with this late homologous recombination function of Rad54 protein.
Asunto(s)
ADN Cruciforme/química , ADN Cruciforme/metabolismo , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Emparejamiento Base , Catálisis , Intercambio Genético , ADN Helicasas , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Recombinasa Rad51/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por SustratoRESUMEN
The Holliday junction is a key intermediate of DNA repair, recombination, and replication. Branch migration of Holliday junctions is a process in which one DNA strand is progressively exchanged for another. Branch migration of Holliday junctions may serve several important functions such as affecting the length of genetic information transferred between homologous chromosomes during meiosis, restarting stalled replication forks, and ensuring the faithful repair of double strand DNA breaks by homologous recombination. Several proteins that promote branch migration of Holliday junctions have been recently identified. These proteins, which function during DNA replication and repair, possess the ability to bind Holliday junctions and other branched DNA structures and drive their branch migration by translocating along DNA in an ATPase-dependent manner. Here, we describe methods employing a wide range of DNA substrates for studying proteins that catalyze branch migration of Holliday junctions.
Asunto(s)
Células Eucariotas , Proteínas/química , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Cruciforme/química , Proteínas de Unión al ADN , Electroforesis en Gel Bidimensional , Proteínas Nucleares/metabolismo , Oligonucleótidos/químicaRESUMEN
Rad54, a key protein of homologous recombination, physically interacts with a DNA structure-specific endonuclease, Mus81-Eme1. Genetic data indicate that Mus81-Eme1 and Rad54 might function together in the repair of damaged DNA. In vitro, Rad54 promotes branch migration of Holliday junctions, whereas the Mus81-Eme1 complex resolves DNA junctions by endonucleolytic cleavage. Here, we show that human Rad54 stimulates Mus81-Eme1 endonuclease activity on various Holliday junction-like intermediates. This stimulation is the product of specific interactions between the human Rad54 (hRad54) and Mus81 proteins, considering that Saccharomyces cerevisiae Rad54 protein does not stimulate human Mus81-Eme1 endonuclease activity. Stimulation of Mus81-Eme1 cleavage activity depends on formation of specific Rad54 complexes on DNA substrates occurring in the presence of ATP and, to a smaller extent, of other nucleotide cofactors. Thus, our results demonstrate a functional link between the branch migration activity of hRad54 and the structure-specific endonuclease activity of hMus81-Eme1, suggesting that the Rad54 and Mus81-Eme1 proteins may cooperate in the processing of Holliday junction-like intermediates during homologous recombination or DNA repair.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Proteínas Nucleares/fisiología , Secuencia de Bases , ADN/metabolismo , ADN Helicasas , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Humanos , Recombinación Genética , Especificidad por SustratoRESUMEN
Rad54 is a eukaryotic protein that plays an important role in homologous recombination. Rad54, a member of the Swi2/Snf2 family, binds to Holliday junctions with high specificity and promotes their branch migration in an ATP hydrolysis-dependent manner. Here we describe the methods our laboratory used to characterize the branch migration activity of Rad54. These assays are applicable for other branch migration proteins regardless of whether they have canonical helicase activity or not.
Asunto(s)
Adenosina Trifosfato/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , ADN/química , Roturas del ADN de Doble Cadena , Electroforesis en Gel de Poliacrilamida , Humanos , Hidrólisis , MeiosisRESUMEN
Loss or inactivation of BLM, a helicase of the RecQ family, causes Bloom syndrome, a genetic disorder with a strong predisposition to cancer. Although the precise function of BLM remains unknown, genetic data has implicated BLM in the process of genetic recombination and DNA repair. Previously, we demonstrated that BLM can disrupt the RAD51-single-stranded DNA filament that promotes the initial steps of homologous recombination. However, this disruption occurs only if RAD51 is present in an inactive ADP-bound form. Here, we investigate interactions of BLM with the active ATP-bound form of the RAD51-single-stranded DNA filament. Surprisingly, we found that BLM stimulates DNA strand exchange activity of RAD51. In contrast to the helicase activity of BLM, this stimulation does not require ATP hydrolysis. These data suggest a novel BLM function that is stimulation of the RAD51 DNA pairing. Our results demonstrate the important role of the RAD51 nucleoprotein filament conformation in stimulation of DNA pairing by BLM.
Asunto(s)
Adenosina Trifosfato/metabolismo , ADN de Cadena Simple/metabolismo , Recombinasa Rad51/metabolismo , RecQ Helicasas/metabolismo , Adenosina Trifosfatasas/metabolismo , Emparejamiento Base/efectos de los fármacos , Calcio/metabolismo , Calcio/farmacología , ADN , ADN Helicasas , Reparación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Proteínas de Unión al ADN , Humanos , Modelos Genéticos , Mutación , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico/efectos de los fármacos , RecQ Helicasas/genética , Recombinación Genética/efectos de los fármacosRESUMEN
A possible role for structure-specific recognition protein 1 (SSRP1) in replication-associated repair processes has previously been suggested based on its interaction with several DNA repair factors and the replication defects observed in SSRP1 mutants. In this study, we investigated the potential role of SSRP1 in association with DNA repair mediated by homologous recombination (HR), one of the pathways involved in repairing replication-associated DNA damage, in mammalian cells. Surprisingly, over-expression of SSRP1 reduced the number of hprt(+) recombinants generated via HR both spontaneously and upon hydroxyurea (HU) treatment, whereas knockdown of SSRP1 resulted in an increase of HR events in response to DNA double-strand break formation. In correlation, we found that the depletion of SSRP1 in HU-treated human cells elevated the number of Rad51 and H2AX foci, while over-expression of the wild-type SSRP1 markedly reduced HU-induced Rad51 foci formation. We also found that SSRP1 physically interacts with a key HR repair protein, Rad54 both in vitro and in vivo. Further, branch migration studies demonstrated that SSRP1 inhibits Rad54-promoted branch migration of Holliday junctions in vitro. Taken together, our data suggest a functional role for SSRP1 in spontaneous and replication-associated DNA damage response by suppressing avoidable HR repair events.
Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/fisiología , Proteínas del Grupo de Alta Movilidad/fisiología , Recombinación Genética , Factores de Elongación Transcripcional/fisiología , Animales , Western Blotting , Cricetinae , Cricetulus , Roturas del ADN de Doble Cadena , Daño del ADN , ADN Helicasas , ADN Cruciforme/metabolismo , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Genes Reporteros , Proteínas del Grupo de Alta Movilidad/biosíntesis , Proteínas del Grupo de Alta Movilidad/deficiencia , Proteínas del Grupo de Alta Movilidad/genética , Histonas/metabolismo , Humanos , Hidroxiurea , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos , Plásmidos , Unión Proteica , ARN Interferente Pequeño , Recombinasa Rad51/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Factores de Elongación Transcripcional/biosíntesis , Factores de Elongación Transcripcional/deficiencia , Factores de Elongación Transcripcional/genética , TransfecciónRESUMEN
Proteins of the Rad51 family play a key role in homologous recombination by carrying out DNA strand exchange. Here, we present the methodology and the protocols for the 4-strand exchange between gapped circular DNA and homologous linear duplex DNA promoted by human Rad51 and Escherichia coli RecA orthologs. This reaction includes formation of joint molecules and their extension by branch migration in a polar manner. The presented methodology may be used for reconstitution of the medial-to-late stages of homologous recombination in vitro as well as for investigation of the mechanisms of branch migration by helicase-like proteins, e.g., Rad54, BLM, or RecQ1.
Asunto(s)
ADN Circular/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo , Recombinasa Rad51/metabolismo , Rec A Recombinasas/metabolismo , ADN Circular/química , Marcaje Isotópico/instrumentación , Marcaje Isotópico/métodos , Ácidos Nucleicos Heterodúplex/química , Radioisótopos de Fósforo/química , Reparación del ADN por Recombinación , Coloración y Etiquetado/instrumentación , Coloración y Etiquetado/métodosRESUMEN
In eukaryotes, RAD54 catalyzes branch migration (BM) of Holliday junctions, a basic process during DNA repair, replication, and recombination. RAD54 also stimulates RAD51 recombinase and has other activities. Here, we investigate the structural determinants for different RAD54 activities. We find that the RAD54 N-terminal domain (NTD) is responsible for initiation of BM through two coupled, but distinct steps; specific binding to Holliday junctions and RAD54 oligomerization. Furthermore, we find that the RAD54 oligomeric state can be controlled by NTD phosphorylation at S49, a CDK2 consensus site, which inhibits RAD54 oligomerization and, consequently, BM. Importantly, the effect of phosphorylation on RAD54 oligomerization is specific for BM, as it does not affect stimulation of RAD51 recombinase by RAD54. Thus, the transition of the oligomeric states provides an important control of the biological functions of RAD54 and, likely, other multifunctional proteins.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , ADN Cruciforme/metabolismo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Línea Celular , ADN Helicasas/química , ADN Helicasas/genética , Reparación del ADN , ADN Cruciforme/química , ADN Cruciforme/genética , Proteínas de Unión al ADN , Humanos , Hidrólisis , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformación de Ácido Nucleico , Fosforilación , Multimerización de Proteína , Recombinación Genética , Homología de Secuencia de Aminoácido , Células Sf9 , SpodopteraRESUMEN
Homologous recombination (HR) plays an important role in maintaining genomic integrity. It is responsible for repair of the most harmful DNA lesions, DNA double-strand breaks and inter-strand DNA cross-links. HR function is also essential for proper segregation of homologous chromosomes in meiosis, maintenance of telomeres, and resolving stalled replication forks. Defects in HR often lead to genetic diseases and cancer. Rad52 is one of the key HR proteins, which is evolutionarily conserved from yeast to humans. In yeast, Rad52 is important for most HR events; Rad52 mutations disrupt repair of DNA double-strand breaks and targeted DNA integration. Surprisingly, in mammals, Rad52 knockouts showed no significant DNA repair or recombination phenotype. However, recent work demonstrated that mutations in human RAD52 are synthetically lethal with mutations in several other HR proteins including BRCA1 and BRCA2. These new findings indicate an important backup role for Rad52, which complements the main HR mechanism in mammals. In this review, we focus on the Rad52 activities and functions in HR and the possibility of using human RAD52 as therapeutic target in BRCA1 and BRCA2-deficient familial breast cancer and ovarian cancer.
RESUMEN
The HOP2-MND1 heterodimer is required for progression of homologous recombination in eukaryotes. In vitro, HOP2-MND1 stimulates the DNA strand exchange activities of RAD51 and DMC1. We demonstrate that HOP2-MND1 induces changes in the conformation of RAD51 that profoundly alter the basic properties of RAD51. HOP2-MND1 enhances the interaction of RAD51 with nucleotide cofactors and modifies its DNA-binding specificity in a manner that stimulates DNA strand exchange. It enables RAD51 DNA strand exchange in the absence of divalent metal ions required for ATP binding and offsets the effect of the K133A mutation that disrupts ATP binding. During nucleoprotein formation HOP2-MND1 helps to load RAD51 on ssDNA restricting its dsDNA-binding and during the homology search it promotes dsDNA binding removing the inhibitory effect of ssDNA. The magnitude of the changes induced in RAD51 defines HOP2-MND1 as a 'molecular trigger' of RAD51 DNA strand exchange.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Nucleótidos/metabolismo , Recombinasa Rad51/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas de Ciclo Celular/genética , ADN/genética , Ratones , Unión Proteica , Recombinasa Rad51/genéticaRESUMEN
The homologous recombination (HR) pathway plays a crucial role in the repair of DNA double-strand breaks (DSBs) and interstrand cross-links (ICLs). RAD51, a key protein of HR, possesses a unique activity: DNA strand exchange between homologous DNA sequences. Recently, using a high-throughput screening (HTS), we identified compound 1 (B02), which specifically inhibits the DNA strand exchange activity of human RAD51. Here, we analyzed the mechanism of inhibition and found that 1 disrupts RAD51 binding to DNA. We then examined the effect of 1 on HR and DNA repair in the cell. The results show that 1 inhibits HR and increases cell sensitivity to DNA damage. We propose to use 1 for analysis of cellular functions of RAD51. Because DSB- and ICL-inducing agents are commonly used in anticancer therapy, specific inhibitors of RAD51 may also help to increase killing of cancer cells.
Asunto(s)
Antineoplásicos/química , Quinazolinonas/química , Recombinasa Rad51/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Sinergismo Farmacológico , Células HEK293 , Humanos , Ratones , Mitomicina/farmacología , Nucleoproteínas/metabolismo , Unión Proteica , Quinazolinonas/farmacología , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Recombinación GenéticaRESUMEN
Double-stranded DNA breaks (DSB), the most harmful type of DNA lesions, cause cell death and genome instability. Homologous recombination repairs DSB using homologous DNA sequences as templates. Here we describe a set of reactions that lead to reconstitution of the double-stranded DNA break repair process in vitro employing purified human homologous recombination proteins and DNA polymerase η. Reconstitution of critical steps of DSB repair in vitro may help to better understand the mechanisms of recombinational DNA repair and the role of various human homologous recombination proteins in this process.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Recombinación Genética/genética , ADN Cruciforme/genética , HumanosRESUMEN
The ubiquitously expressed Rad51 recombinase and the meiosis-specific Dmc1 recombinase promote the formation of strand-invasion products (D-loops) between homologous molecules. Strand-invasion products are processed by either the double-strand break repair (DSBR) or synthesis-dependent strand annealing (SDSA) pathway. D-loops destined to be processed by SDSA need to dissociate, producing non-crossovers, and those destined for DSBR should resist dissociation to generate crossovers. The mechanism that channels recombination intermediates into different homologous-recombination pathways is unknown. Here we show that D-loops in a human DMC1-driven reaction are substantially more resistant to dissociation by branch-migration proteins such as RAD54 than those formed by RAD51. We propose that the intrinsic resistance to dissociation of DMC1 strand-invasion intermediates may account for why DMC1 is essential to ensure the proper segregation of chromosomes in meiosis.
Asunto(s)
Proteínas de Ciclo Celular/química , Segregación Cromosómica , Proteínas de Unión al ADN/química , Meiosis , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , ADN Helicasas , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Humanos , Modelos Genéticos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Estructura Terciaria de Proteína , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Recombinación Genética , Transactivadores/química , Transactivadores/metabolismoRESUMEN
Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions.
Asunto(s)
ADN Helicasas/metabolismo , Recombinación Genética , Animales , ADN/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , Reparación del ADN , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Humanos , Unión ProteicaRESUMEN
The Rad54 protein plays an important role during homologous recombination in eukaryotes. The protein belongs to the Swi2/Snf2 family of ATP-dependent DNA translocases. We previously showed that yeast and human Rad54 (hRad54) specifically bind to Holliday junctions and promote branch migration. Here we examined the minimal DNA structural requirements for optimal hRad54 ATPase and branch migration activity. Although a 12-bp double-stranded DNA region of branched DNA is sufficient to induce ATPase activity, the minimal substrate that gave rise to optimal stimulation of the ATP hydrolysis rate consisted of two short double-stranded DNA arms, 15 bp each, combined with a 45-nucleotide single-stranded DNA branch. We showed that hRad54 binds preferentially to the open and not to the stacked conformation of branched DNA. Stoichiometric titration of hRad54 revealed formation of two types of hRad54 complexes with branched DNA substrates. The first of them, a dimer, is responsible for the ATPase activity of the protein. However, branch migration activity requires a significantly higher stoichiometry of hRad54, approximately 10 +/- 2 protein monomers/DNA molecule. This pleomorphism of hRad54 in formation of oligomeric complexes with DNA may correspond to multiple functions of the protein in homologous recombination.