Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Biol Lett ; 29(1): 101, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978018

RESUMEN

BACKGROUND: Prostate cancer (PCa) ranks as the second most prevalent cancer in men, with advanced stages posing significant treatment challenges. Given its solid tumor nature, PCa is highly susceptible to hypoxia, a condition associated with resistance to radiation and chemotherapy, metastasis, and unfavorable patient outcomes. Hypoxia-inducible factors (HIFs) play a pivotal role in cancer cell adaptation to hypoxic environments, contributing to treatment resistance. Consequently, inhibitors targeting HIFs hold promise for cancer therapy. METHODS: In this study, we aimed to characterize novel HIF-1α inhibitors including Sodwanones A (1), B (2), C (3), G (4) and Yardenone 2 (5) isolated from marine sponges belonging to the Axinella genus. Our investigation evaluated the impact of these compounds on various aspects of HIF-1α regulation, including stabilization, nuclear localization, expression of HIF-1 target genes (while sparing HIF-2 target genes), cellular metabolism, as well as cell proliferation and viability in prostate cells under hypoxic conditions. RESULTS: Our findings revealed that among the compounds tested, Yardenone 2 exhibited notable effects in hypoxia: it destabilized HIF-1α at the protein level, decreased its nuclear localization, selectively altered the expression of HIF-1 target genes, and restrained cell proliferation in aggressive PC3 prostate cancer cells as well as in an MSK-PCa3 patient-derived organoid line. Moreover, it affected the morphology of these organoid. Yardenone 2 was also compared to Docetaxel, a specific microtubule inhibitor and a drug used in the treatment of prostate cancer. The comparison between the two compounds revealed notable differences, such as a lack of specificity to hypoxic cells of Docetaxel. CONCLUSION: These results mark the first demonstration that Yardenone 2 functions as a cytostatic-like inhibitor impacting microtubules, specifically targeting hypoxic cancer cells. This discovery suggests a promising avenue for novel therapeutic interventions in prostate cancer.


Asunto(s)
Proliferación Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias de la Próstata , Humanos , Masculino , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Animales , Poríferos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Hipoxia de la Célula/efectos de los fármacos
2.
EMBO J ; 43(11): 2087-2090, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38698216
3.
J Physiol ; 599(8): 2299-2321, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33608879

RESUMEN

KEY POINTS: Patients with end-stage renal failure need arteriovenous fistulas (AVF) to undergo dialysis. However, AVFs present a high rate of failure as a result of excessive venous thickness. Excessive venous thickness may be a consequence of surgical dissection and change in oxygen concentration within the venous wall. We show that venous cells adapt their metabolism and growth depending on oxygen concentration, and drugs targeting the hypoxic response pathway modulate this response in vitro. We used the same drugs on a mouse model of AVF and show that direct or indirect inhibition of the hypoxia-inducible factors (HIFs) help decrease excessive venous thickness. Hypoxia and HIFs can be targets of therapeutic drugs to prevent excessive venous thickness in patients undergoing AVF surgical creation. ABSTRACT: Because the oxygen concentration changes in the venous wall, surrounding tissue and the blood during surgical creation of arteriovenous fistula (AVF), we hypothesized that hypoxia could contribute to AVF failure as a result of neointimal hyperplasia. We postulated that modulation of the hypoxia-inducible factors (HIF) with pharmacological compounds could promote AVF maturation. Fibroblasts [normal human fibroblasts (NHF)], smooth muscle cells [human umbilical vein smooth muscle cells (HUVSMC)] and endothelial cells [human umbilical vein endothelial cells (HUVEC)], representing the three layers of the venous wall, were tested in vitro for proliferation, cell death, metabolism, reactive oxygen species production and migration after silencing of HIF1/2-α or after treatment with deferioxamine (DFO), everolimus (Eve), metformin (Met), N-acetyl-l-cysteine (NAC) and topoisomerase I (TOPO), which modulate HIF-α stability or activity. Compounds that were considered to most probably modify intimal hyperplasia were applied locally to the vessels in a mouse model of aortocaval fistula. We showed, in vitro, that NHF and HUVSMC can adapt their metabolism and thus their growth depending on oxygen concentration, whereas HUVEC appears to be less flexible. siHIF1/2α, DFO, Eve, Met, NAC and TOPO can modulate metabolism and proliferation depending on the cell type and the oxygen concentration. In vivo, siHIF1/2α, Eve and TOPO decreased neointimal hyperplasia by 32%-50%, 7 days after treatment. Within the vascular wall, hypoxia and HIF-1/2 mediate early failure of AVF. Local delivery of drugs targeting HIF-1/2 could inhibit neointimal hyperplasia in a mouse model of AVF. Such compounds may be delivered during the surgical procedure for AVF creation to prevent early AVF failure.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Células Endoteliales , Humanos , Hiperplasia , Hipoxia
4.
J Cell Mol Med ; 24(5): 2931-2941, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32032472

RESUMEN

Arteriovenous fistulas (AVFs) are the preferred vascular access for haemodialysis of patients suffering from end-stage renal disease, a worldwide public health problem. However, they are prone to a high rate of failure due to neointimal hyperplasia and stenosis. This study aimed to determine if osteopontin (OPN) was induced in hypoxia and if OPN could be responsible for driving AVF failure. Identification of new factors that participate in remodelling of AVFs is a challenge. Three cell lines representing the cells of the three layers of the walls of arteries and veins, fibroblasts, smooth muscle cells and endothelial cells, were tested in mono- and co-culture in vitro for OPN expression and secretion in normoxia compared to hypoxia after silencing the hypoxia-inducible factors (HIF-1α, HIF-2α and HIF-1/2α) with siRNA or after treatment with an inhibitor of NF-kB. None of the cells in mono-culture showed OPN induction in hypoxia, whereas cells in co-culture secreted OPN in hypoxia. The changes in oxygenation that occur during AVF maturation up-regulate secretion of OPN through cell-cell interactions between the different cell layers that form AVF, and in turn, these promote endothelial cell proliferation and could participate in neointimal hyperplasia.


Asunto(s)
Fibroblastos/citología , Células Endoteliales de la Vena Umbilical Humana/citología , Miocitos del Músculo Liso/citología , Osteopontina/metabolismo , Hipoxia de la Célula/genética , Técnicas de Cocultivo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Miocitos del Músculo Liso/metabolismo , Osteopontina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
J Cell Physiol ; 235(2): 1184-1196, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31294462

RESUMEN

Brown and brown-like adipocytes (BBAs) control thermogenesis and are detected in adult humans. They express UCP1, which transforms energy into heat. They appear as promising cells to fight obesity. Deciphering the molecular mechanisms leading to the browning of human white adipocytes or the whitening of BBAs represents a goal to properly and safely control the pathways involved in these processes. Here, we analyzed how drugs endowed with therapeutic potential affect the differentiation of human adipose progenitor-cells into BBAs and/or their phenotype. We showed that HIV-protease inhibitors (PI) reduced UCP1 expression in BBAs modifying their metabolic profile and the mitochondria functionality. Lopinavir (LPV) was more potent than darunavir (DRV), a last PI generation. PPARγ and PGC-1α were decreased in a PI or cell-specific manner, thus altering UCP1's constitutive expression. In addition, LPV altered p38 MAPK phosphorylation, blunting then the ß-adrenergic responses. In contrast, low doses of resveratrol stimulated the activatable expression of UCP1 in a p38 MAPK-dependent manner and counteracted the LPV induced loss of UCP1. This effect was independent of the resveratrol-induced sirtuin-1 expression. Altogether our results uncover how drugs impact crucial components of the networks regulating the expression of the thermogenic signature. They provide important information to control the relevant pathways involved in energy expenditure.


Asunto(s)
Adipocitos/efectos de los fármacos , Darunavir/farmacología , Resveratrol/farmacología , Proteína Desacopladora 1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Adipocitos/metabolismo , Antioxidantes/farmacología , Línea Celular , Colforsina , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Compuestos Orgánicos/farmacología , Fosforilación , Proteína Desacopladora 1/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
6.
Cell Mol Biol Lett ; 24: 18, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949212

RESUMEN

BACKGROUND: Polysaccharides from various sources have been used in traditional medicine for centuries. The beneficial pharmacological effects of plant-derived polysaccharides include anti-tumor activity. METHODS: Here, we evaluated the anti-cancer effect of the MSAGM:VO complex under hypoxic conditions (1% oxygen). MSAGM:VO is a complex of the hydrolysate of galactomannan (MSAGM) from Schizolobium amazonicum with oxovanadium (IV/V). The hepatocellular carcinoma (HCC) cell line HepG2 was selected as HCC are one of the most hypoxic solid tumors. RESULTS: Our results showed that the strong apoptotic activity of MSAGM:VO observed in HepG2 cells under normoxic conditions was completely lost under hypoxic conditions. We found a dynamic balance between the pro- and anti-apoptotic members of the Bcl-2 protein family. The expressions of anti-apoptotic Mcl-1 and Bcl-XL increased in hypoxia, whereas the expression of pro-apoptotic Bax decreased. MSAGM:VO strongly induced autophagy, which was previously characterized as a pro-survival mechanism in hypoxia. These results demonstrate total elimination of the anti-cancer activity of MSAGM:VO with activation of autophagy under conditions of hypoxia. CONCLUSION: Although this study is a proof-of-concept of the impact of hypoxia on the potential of polysaccharides, further study is encouraged. The anti-tumor activity of polysaccharides could be achieved in normoxia or through raising the activity of the immune system. In addition, combination strategies for therapy with anti-autophagic drugs could be proposed.


Asunto(s)
Citoprotección/efectos de los fármacos , Mananos/farmacología , Vanadatos/farmacología , Muerte Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Galactosa/análogos & derivados , Células Hep G2 , Humanos
7.
Int J Mol Sci ; 20(6)2019 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-30884815

RESUMEN

The primary cilium is a solitary, nonmotile and transitory appendage that is present in virtually all mammalian cells. Our knowledge of its ultrastructure and function is the result of more than fifty years of research that has dramatically changed our perspectives on the primary cilium. The mutual regulation between ciliogenesis and the cell cycle is now well-recognized, as well as the function of the primary cilium as a cellular "antenna" for perceiving external stimuli, such as light, odorants, and fluids. By displaying receptors and signaling molecules, the primary cilium is also a key coordinator of signaling pathways that converts extracellular cues into cellular responses. Given its critical tasks, any defects in primary cilium formation or function lead to a wide spectrum of diseases collectively called "ciliopathies". An emerging role of primary cilium is in the regulation of cancer development. In this review, we seek to describe the current knowledge about the influence of the primary cilium in cancer progression, with a focus on some of the events that cancers need to face to sustain survival and growth in hypoxic microenvironment: the cancer hallmarks.


Asunto(s)
Autofagia/genética , Biomarcadores de Tumor/genética , Cilios/ultraestructura , Neoplasias/ultraestructura , Ciclo Celular , Cilios/genética , Humanos , Neoplasias/genética , Neoplasias/patología , Unión Proteica/genética , Transducción de Señal/genética , Microambiente Tumoral/genética
8.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671790

RESUMEN

For patients with end-stage renal disease requiring hemodialysis, their vascular access is both their lifeline and their Achilles heel. Despite being recommended as primary vascular access, the arteriovenous fistula (AVF) shows sub-optimal results, with about 50% of patients needing a revision during the year following creation. After the AVF is created, the venous wall must adapt to new environment. While hemodynamic changes are responsible for the adaptation of the extracellular matrix and activation of the endothelium, surgical dissection and mobilization of the vein disrupt the vasa vasorum, causing wall ischemia and oxidative stress. As a consequence, migration and proliferation of vascular cells participate in venous wall thickening by a mechanism of neointimal hyperplasia (NH). When aggressive, NH causes stenosis and AVF dysfunction. In this review we show how hypoxia, metabolism, and flow parameters are intricate mechanisms responsible for the development of NH and stenosis during AVF maturation.


Asunto(s)
Fístula Arteriovenosa/metabolismo , Hiperplasia/metabolismo , Hipoxia/metabolismo , Neointima/metabolismo , Proliferación Celular , Constricción Patológica , Hemodinámica , Humanos , Isquemia , Enfermedades Renales , Diálisis Renal , Insuficiencia Renal Crónica , Enfermedades Vasculares , Venas/patología
9.
FASEB J ; 30(2): 909-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26527067

RESUMEN

Brown adipose tissue (BAT) is essential for adaptive thermogenesis and dissipation of caloric excess through the activity of uncoupling protein (UCP)-1. BAT in humans is of great interest for the treatment of obesity and related diseases. In this study, the expression of Twik-related acid-sensitive K(+) channel (TASK)-1 [a pH-sensitive potassium channel encoded by the potassium channel, 2-pore domain, subfamily K, member 3 (Kcnk3) gene] correlated highly with Ucp1 expression in obese and cold-exposed mice. In addition, Task1-null mice, compared with their controls, became overweight, mainly because of an increase in white adipose tissue mass and BAT whitening. Task1(-/-)-mouse-derived brown adipocytes, compared with wild-type mouse-derived brown adipocytes, displayed an impaired ß3-adrenergic receptor response that was characterized by a decrease in oxygen consumption, Ucp1 expression, and lipolysis. This phenotype was thought to be caused by an exacerbation of mineralocorticoid receptor (MR) signaling, given that it was mimicked by corticoids and reversed by an MR inhibitor. We concluded that the K(+) channel TASK1 controls the thermogenic activity in brown adipocytes through modulation of ß-adrenergic receptor signaling.


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transducción de Señal/fisiología , Adipocitos Marrones/citología , Tejido Adiposo Pardo/citología , Animales , Femenino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Consumo de Oxígeno/fisiología , Canales de Potasio de Dominio Poro en Tándem/genética , Receptores de Mineralocorticoides/genética , Termogénesis/fisiología
10.
Mol Oncol ; 18(7): 1719-1738, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38214418

RESUMEN

Metformin and IACS-010759 are two distinct antimetabolic agents. Metformin, an established antidiabetic drug, mildly inhibits mitochondrial complex I, while IACS-010759 is a new potent mitochondrial complex I inhibitor. Mitochondria is pivotal in the energy metabolism of cells by providing adenosine triphosphate through oxidative phosphorylation (OXPHOS). Hence, mitochondrial metabolism and OXPHOS become a vulnerability when targeted in cancer cells. Both drugs have promising antitumoral effects in diverse cancers, supported by preclinical in vitro and in vivo studies. We present evidence of their direct impact on cancer cells and their immunomodulatory effects. In clinical studies, while observational epidemiologic studies on metformin were encouraging, actual trial results were not as expected. However, IACS-01075 exhibited major adverse effects, thereby causing a metabolic shift to glycolysis and elevated lactic acid concentrations. Therefore, the future outlook for these two drugs depends on preventive clinical trials for metformin and investigations into the plausible toxic effects on normal cells for IACS-01075.


Asunto(s)
Complejo I de Transporte de Electrón , Metformina , Neoplasias , Metformina/uso terapéutico , Metformina/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/inmunología , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Fosforilación Oxidativa/efectos de los fármacos
11.
J Cell Physiol ; 228(9): 1854-62, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23459996

RESUMEN

The efficacy of targeting pH disruption to induce cell death in the acidic and hypoxic tumor microenvironment continues to be assessed. Here we analyzed the impact of varying levels of hypoxia in acidic conditions on fibroblast and tumor cell survival. Across all cell lines tested, hypoxia (1% O(2)) provided protection against acidosis induced cell death compared to normoxia. Meanwhile severe hypoxia (0.1% O(2)) removed this protection and in some cases exacerbated acidosis-induced cell death. Differential survival between cell types during external acidosis correlated with their respective intracellular pH regulating capabilities. Cellular ATP measurements were conducted to determine their contribution to cell survival under these combined stresses. In general, hypoxia (1% O(2)) maintained elevated ATP levels in acidic conditions while severe hypoxia did not. To further explore this interaction we combined acidosis with ATP depletion using 2-deoxyglucose and observed an enhanced rate of cell mortality. Striking results were also observed with hypoxia providing protection against cell death in spite of a severe metabolic stress induced by a combination of acidosis and oligomycin. Finally, we demonstrated that both HIF1α and HIF2α expression were drastically reduced in hypoxic and acidic conditions indicating a sensitivity of this protein to cellular pH conditions. This knockdown of HIF expression by acidosis has implications for the development of therapies targeting the disruption of cellular pH regulation. Our results reinforce the proof of concept that acidosis and metabolic disruption affecting ATP levels could be exploited as a tumor cell killing strategy.


Asunto(s)
Adenosina Trifosfato/metabolismo , Hipoxia de la Célula/fisiología , Neoplasias/metabolismo , Microambiente Tumoral , Acidosis , Adenosina Trifosfato/fisiología , Animales , Línea Celular Tumoral , Supervivencia Celular , Cricetinae , Cricetulus , Citoplasma/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias/patología
12.
Bull Cancer ; 110(4): 412-423, 2023 Apr.
Artículo en Francés | MEDLINE | ID: mdl-36822958

RESUMEN

Medulloblastoma (MB) is a malignant brain tumor that mainly affects children. It is rarely found in adults. Among the four groups of MB defined today according to molecular characteristics, group 3 is the least favorable with an overall survival rate of 50 %. Current treatments, based on surgery, radiotherapy, and chemotherapy, are not sufficiently adapted to the different characteristics of the four MB groups. However, the use of new cellular and animal models has opened new doors to interesting therapeutic avenues. In this review, we detail recent advances in MB research, with a focus on the genes and pathways that drive tumorigenesis, with particular emphasis on the animal models that have been developed to study tumor biology, as well as advances in new targeted therapies.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Animales , Meduloblastoma/genética , Meduloblastoma/terapia , Meduloblastoma/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/terapia , Neoplasias Cerebelosas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Modelos Animales , Tasa de Supervivencia
13.
Bull Cancer ; 110(3): 331-335, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36775700

RESUMEN

This article highlights the presentations from the 2021 scientific meeting of the Club Hematopoiesis and Oncogenesis. This annual meeting focuses on hematopoiesis and oncogenic mechanisms. Various topics were presented: expansion of hematopoietic stem cells with in vivo and ex vivo strategies, the role of the hematopoietic stem cell niches in aging and leukemic resistance, the crossroad between hematology and immunology, the importance of the metabolism in normal hematopoiesis and hematopoietic defects, solid tumors and oncogenesis, the noncoding genome, inflammation in monocyte differentiation and leukemia, and importantly, the recent advances in myeloid malignancies, lymphoid leukemia and lymphoma.


Asunto(s)
Leucemia , Linfoma , Humanos , Hematopoyesis/genética , Células Madre Hematopoyéticas , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología
14.
EMBO Mol Med ; 15(12): e17719, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37966164

RESUMEN

Metastatic uveal melanomas are highly resistant to all existing treatments. To address this critical issue, we performed a kinome-wide CRISPR-Cas9 knockout screen, which revealed the LKB1-SIK2 module in restraining uveal melanoma tumorigenesis. Functionally, LKB1 loss enhances proliferation and survival through SIK2 inhibition and upregulation of the sodium/calcium (Na+ /Ca2+ ) exchanger SLC8A1. This signaling cascade promotes increased levels of intracellular calcium and mitochondrial reactive oxygen species, two hallmarks of cancer. We further demonstrate that combination of an SLC8A1 inhibitor and a mitochondria-targeted antioxidant promotes enhanced cell death efficacy in LKB1- and SIK2-negative uveal melanoma cells compared to control cells. Our study also identified an LKB1-loss gene signature for the survival prognostic of patients with uveal melanoma that may be also predictive of response to the therapy combination. Our data thus identify not only metabolic vulnerabilities but also new prognostic markers, thereby providing a therapeutic strategy for particular subtypes of metastatic uveal melanoma.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Humanos , Calcio , Proliferación Celular , Melanoma/tratamiento farmacológico , Especies Reactivas de Oxígeno , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología
15.
Nature ; 441(7092): 437-43, 2006 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-16724055

RESUMEN

Tumour cells emerge as a result of genetic alteration of signal circuitries promoting cell growth and survival, whereas their expansion relies on nutrient supply. Oxygen limitation is central in controlling neovascularization, glucose metabolism, survival and tumour spread. This pleiotropic action is orchestrated by hypoxia-inducible factor (HIF), which is a master transcriptional factor in nutrient stress signalling. Understanding the role of HIF in intracellular pH (pH(i)) regulation, metabolism, cell invasion, autophagy and cell death is crucial for developing novel anticancer therapies. There are new approaches to enforce necrotic cell death and tumour regression by targeting tumour metabolism and pH(i)-control systems.


Asunto(s)
Hipoxia de la Célula , Neoplasias/metabolismo , Neoplasias/patología , Oxígeno/metabolismo , Transducción de Señal , Animales , Humanos , Neovascularización Patológica , Proteínas Quinasas/metabolismo , Serina-Treonina Quinasas TOR
16.
J Nephrol ; 35(2): 527-534, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34468976

RESUMEN

BACKGROUND AND AIMS: Despite close follow-up of patients with native arteriovenous fistulas (AVFs), up to 10% experience thrombosis each year. The OSMOSIS Study (Osteopontin as a Marker of Stenosis) tested the hypothesis that the systemic osteopontin level, a pro-inflammatory mediator related to vascular remodelling and intimal hyperplasia, increases in AVF stenosis, and may be used in clinical surveillance. METHODS: Our cross-sectional study compared the level of plasmatic osteopontin (pOPN) between patients with a well-functioning AVF (control group) and patients who required revision of their AVF due to stenosis (stenosis group). Blood samples were collected before dialysis (control group) or before intervention (stenosis group) from the AVF arm, and from the opposite arm as a within-subject control. pOPN level was measured by enzyme-linked immunosorbent assay. RESULTS: A total of 76 patients were included in the study. Baseline characteristics were similar between the groups (mean age, 70 years; men, 63%; AVF duration, 39 months), apart from prevalence of type 2 diabetes (T2D) (control group, 33%; stenosis group, 57%; p = 0.04). pOPN levels were similar between the AVF arm and the contralateral arm (551 ± 42 ng/mL vs. 521 ± 41 ng/mL, respectively, p = 0.11, paired t-test). Patients in the stenosis group displayed a higher pOPN level than patients in the control group (650.2 ± 59.8 ng/mL vs. 460.5 ± 61.2, respectively, p = 0.03; two-way ANOVA). T2D was not identified as an associated factor in a multivariate analysis (p = 0.50). CONCLUSIONS: The level of pOPN in hemodialysis patients was associated with the presence of AVF stenosis requiring intervention. Thus, its potential as a diagnostic biomarker should be assessed in a vascular access surveillance program.


Asunto(s)
Derivación Arteriovenosa Quirúrgica , Diabetes Mellitus Tipo 2 , Anciano , Derivación Arteriovenosa Quirúrgica/efectos adversos , Estudios de Casos y Controles , Estudios Transversales , Humanos , Masculino , Ósmosis , Osteopontina , Diálisis Renal/efectos adversos , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento , Grado de Desobstrucción Vascular
17.
FEBS J ; 289(18): 5516-5526, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34817127

RESUMEN

The 4th International meeting Metabolism and Cancer initially programed to take place in Bordeaux (France) was held virtually on May 27-29, 2021. The three-day event was followed by around 600 participants daily from 47 countries around the world. The meeting hosted 21 speakers including selected talks and a keynote lecture from the Nobel Prize winner Sir Peter J. Ratcliffe (Oxford, UK). Presentations and discussions were divided in four scientific sessions: (a) Redox and energy metabolism (b) Redox and hypoxia (c) Metabolic profiling and epigenetic control and (d) Signalling, fuelling and metabolism in cancer and a general public session on cancer and nutrition. This report summarises the presentations and outcomes of the 4th annual Metabolism and Cancer symposium. We provide here a summary of the scientific highlights of this exciting meeting.


Asunto(s)
Metabolismo , Neoplasias , Humanos , Neoplasias/metabolismo , Sociedades Médicas
18.
Mar Environ Res ; 180: 105709, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35988349

RESUMEN

The Pacific oyster Crassostrea gigas is established in the marine intertidal zone, experiencing rapid and highly dynamic environmental changes throughout the tidal cycle. Depending on the bathymetry, oysters face oxygen deprivation, lack of nutrients, and high changes in temperature during alternation of the cycles of emersion/immersion. Here we showed that intertidal oysters at a bathymetry level of 3 and 5 m delayed by ten days the onset of mortality associated with Pacific Oyster Mortality Syndrome (POMS) as compared to subtidal oysters. Intertidal oysters presented a lower growth but similar energetic reserves to subtidal oysters but induced proteomic changes indicative of a boost in metabolism, inflammation, and innate immunity that may have improved their resistance during infection with the Ostreid herpes virus. Our work highlights that intertidal harsh environmental conditions modify host-pathogen interaction and improve oyster health. This study opens new perspectives on oyster farming for mitigation strategies based on tidal height.


Asunto(s)
Crassostrea , Herpesviridae , Animales , Interacciones Huésped-Patógeno , Inmunidad Innata , Proteómica
19.
Int J Cancer ; 128(7): 1614-23, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20521252

RESUMEN

The pattern of protein expression in tumors is under the influence of nutrient stress, hypoxia and low pH, which determines the survival of neoplastic cells and the development of tumors. Carbonic anhydrase XII (CAXII) is a transmembrane enzyme that catalyzes the reversible hydration of cell-generated carbon dioxide into protons and bicarbonate. Hypoxic conditions activate its transcription and translation and enhanced expression is often present in several types of tumors. The aim of our study was to assess the prognostic significance of CAXII tumor tissues expression in patients with NSCLC. Five hundred fifty-five tumors were immunostained for CAXII on tissue microarrays (TMA) and the results were correlated with clinicopathological parameters and outcome of patients. CAXII overexpression was present in 105/555 (19%) cases and was associated with tumors of lower grade (p = 0.015) and histological type (p < 0.001), being significantly higher in squamous cell carcinoma. High CAXII expression correlated with better overall and disease-specific survival of patients with resectable NSCLC in univariate (p < 0.001) and multivariate survival analyses (p < 0.001). In conclusion, this is the first study demonstrating that a high CAXII tumor tissue expression evaluated on TMAs is related to a better outcome in a large series of patients with resectable NSCLC.


Asunto(s)
Anhidrasas Carbónicas/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/enzimología , Adulto , Anciano , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Femenino , Humanos , Hipoxia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/cirugía , Masculino , Persona de Mediana Edad , Pronóstico , Isoformas de Proteínas
20.
Cancers (Basel) ; 13(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34503182

RESUMEN

This study was directed to characterize the role of glutamine in the modulation of the response of chronic myeloid leukemia (CML) cells to low oxygen, a main condition of hematopoietic stem cell niches of bone marrow. Cells were incubated in atmosphere at 0.2% oxygen in the absence or the presence of glutamine. The absence of glutamine markedly delayed glucose consumption, which had previously been shown to drive the suppression of BCR/Abl oncoprotein (but not of the fusion oncogene BCR/abl) in low oxygen. Glutamine availability thus emerged as a key regulator of the balance between the pools of BCR/Abl protein-expressing and -negative CML cells endowed with stem/progenitor cell potential and capable to stand extremely low oxygen. These findings were confirmed by the effects of the inhibitors of glucose or glutamine metabolism. The BCR/Abl-negative cell phenotype is the best candidate to sustain the treatment-resistant minimal residual disease (MRD) of CML because these cells are devoid of the molecular target of the BCR/Abl-active tyrosine kinase inhibitors (TKi) used for CML therapy. Therefore, the treatments capable of interfering with glutamine action may result in the reduction in the BCR/Abl-negative cell subset sustaining MRD and in the concomitant rescue of the TKi sensitivity of CML stem cell potential. The data obtained with glutaminase inhibitors seem to confirm this perspective.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA