Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 74(2): 627-640, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33665810

RESUMEN

BACKGROUND AND AIMS: Standard hepatitis C virus (HCV) cell-culture models present an altered lipid metabolism and thus produce lipid-poor lipoviral particles (LVPs). These models are thereby weakly adapted to explore the complete natural viral life cycle. APPROACH AND RESULTS: To overcome these limitations, we used an HCV cell-culture model based on both cellular differentiation and sustained hypoxia to better mimic the host-cell environment. The long-term exposure of Huh7.5 cells to DMSO and hypoxia (1% O2 ) significantly enhanced the expression of major differentiation markers and the cellular hypoxia adaptive response by contrast with undifferentiated and normoxic (21% O2 ) standard conditions. Because hepatocyte-like differentiation and hypoxia are key regulators of intracellular lipid metabolism, we characterized the distribution of lipid droplets (LDs) and demonstrated that experimental cells significantly accumulate larger and more numerous LDs relative to standard cell-culture conditions. An immunocapture (IC) and transmission electron microscopy (TEM) method showed that differentiated and hypoxic Huh7.5 cells produced lipoproteins significantly larger than those produced by standard Huh7.5 cell cultures. The experimental cell culture model is permissive to HCV-Japanese fulminant hepatitis (JFH1) infection and produces very-low-buoyant-density LVPs that are 6-fold more infectious than LVPs formed by standard JFH1-infected Huh7.5 cells. Finally, the IC-TEM approach and antibody-neutralization experiments revealed that LVPs were highly lipidated, had a global ultrastructure and a conformation of the envelope glycoprotein complex E1E2 close to that of the ones circulating in infected individuals. CONCLUSIONS: This relevant HCV cell culture model thus mimics the complete native intracellular HCV life cycle and, by extension, can be proposed as a model of choice for studies of other hepatotropic viruses.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C/virología , Hepatocitos/virología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Hipoxia de la Célula , Línea Celular Tumoral , Hepatocitos/fisiología , Humanos
2.
J Cell Mol Med ; 24(17): 10052-10062, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32667731

RESUMEN

Acriflavine (ACF) is an antiseptic with anticancer properties, blocking the growth of solid and haematopoietic tumour cells. Moreover, this compound has been also shown to overcome the resistance of cancer cells to chemotherapeutic agents. ACF has been shown to target hypoxia-inducible factors (HIFs) activity, which are key effectors of hypoxia-mediated chemoresistance. In this study, we showed that ACF inhibits the growth and survival of chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) cell lines in normoxic conditions. We further demonstrated that ACF down-regulates STAT5 expression in CML and AML cells but activates STAT3 in CML cells in a HIF-independent manner. In addition, we demonstrated that ACF suppresses the resistance of CML cells to tyrosine kinase inhibitors, such as imatinib. Our data suggest that the dual effect of ACF might be exploited to eradicate de novo or acquired resistance of myeloid leukaemia cells to chemotherapy.


Asunto(s)
Acriflavina/farmacología , Carcinogénesis/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Factor de Transcripción STAT5/genética , Transducción de Señal/efectos de los fármacos , Proteínas Supresoras de Tumor/genética , Antineoplásicos/farmacología , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Células K562 , Inhibidores de Proteínas Quinasas/farmacología
3.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751795

RESUMEN

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) involvement has been established in the oncogenic cell signaling of acute myeloid leukemia (AML) cells and in the crosstalk with their niche. We have shown an expression of NOX subunits in AML cell lines while NOX activity is lacking in the absence of exogenous stimulation. Here, we used AML cell lines as models to investigate the specificity of VAS3947, a current NOX inhibitor. Results demonstrated that VAS3947 induces apoptosis in AML cells independently of its anti-NOX activity. High-performance liquid chromatography (HPLC) and mass spectrometry analyses revealed that VAS3947 thiol alkylates cysteine residues of glutathione (GSH), while also interacting with proteins. Remarkably, VAS3947 decreased detectable GSH in the MV-4-11 cell line, thereby suggesting possible oxidative stress induction. However, a decrease in both cytoplasmic and mitochondrial reactive oxygen species (ROS) levels was observed by flow cytometry without disturbance of mitochondrial mass and membrane potential. Thus, assuming the consequences of VAS3947 treatment on protein structure, we examined its impact on endoplasmic reticulum (ER) stress. An acute unfolded protein response (UPR) was triggered shortly after VAS3947 exposure, through the activation of inositol-requiring enzyme 1α (IRE1α) and PKR-like endoplasmic reticulum kinase (PERK) pathways. Overall, VAS3947 induces apoptosis independently of anti-NOX activity, via UPR activation, mainly due to aggregation and misfolding of proteins.


Asunto(s)
Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Pirimidinas/farmacología , Triazoles/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
Blood ; 130(5): 655-665, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28576876

RESUMEN

Chronic myeloid leukemia (CML) is a hematopoietic stem cell (HSC)-driven neoplasia characterized by expression of the constitutively active tyrosine kinase BCR/Abl. CML therapy based on tyrosine kinase inhibitors (TKIs) is highly effective in inducing remission but not in targeting leukemia stem cells (LSCs), which sustain minimal residual disease and are responsible for CML relapse following discontinuation of treatment. The identification of molecules capable of targeting LSCs appears therefore of primary importance to aim at CML eradication. LSCs home in bone marrow areas at low oxygen tension, where HSCs are physiologically hosted. This study addresses the effects of pharmacological inhibition of hypoxia-inducible factor-1 (HIF-1), a critical regulator of LSC survival, on the maintenance of CML stem cell potential. We found that the HIF-1 inhibitor acriflavine (ACF) decreased survival and growth of CML cells. These effects were paralleled by decreased expression of c-Myc and stemness-related genes. Using different in vitro stem cell assays, we showed that ACF, but not TKIs, targets the stem cell potential of CML cells, including primary cells explanted from 12 CML patients. Moreover, in a murine CML model, ACF decreased leukemia development and reduced LSC maintenance. Importantly, ACF exhibited significantly less-severe effects on non-CML hematopoietic cells in vitro and in vivo. Thus, we propose ACF, a US Food and Drug Administration (FDA)-approved drug for nononcological use in humans, as a novel therapeutic approach to prevent CML relapse and, in combination with TKIs, enhance induction of remission.


Asunto(s)
Acriflavina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias Experimentales , Células Madre Neoplásicas/metabolismo , Animales , Supervivencia Celular , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Células 3T3 NIH , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Células Madre Neoplásicas/patología
5.
J Cell Sci ; 124(Pt 24): 4172-83, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22193962

RESUMEN

In mouse and human skin, HIF-1α is constitutively expressed in the epidermis, mainly in the basal layer. HIF-1α has been shown to have crucial systemic functions: regulation of kidney erythropoietin production in mice with constitutive HIF-1α epidermal deletion, and hypervascularity following epidermal HIF-1α overexpression. However, its local role in keratinocyte physiology has not been clearly defined. To address the function of HIF-1α in the epidermis, we used the mouse model of HIF-1α knockout targeted to keratinocytes (K14-Cre/Hif1a(flox/flox)). These mice had a delayed skin phenotype characterized by skin atrophy and pruritic inflammation, partly mediated by basement membrane disturbances involving laminin-332 (Ln-332) and integrins. We also investigated the relevance of results of studies in mice to human skin using reconstructed epidermis and showed that HIF-1α knockdown in human keratinocytes impairs the formation of a viable reconstructed epidermis. A diminution of keratinocyte growth potential, following HIF-1α silencing, was associated with a decreased expression of Ln-322 and α6 integrin and ß1 integrin. Overall, these results indicate a role of HIF-1α in skin homeostasis especially during epidermal aging.


Asunto(s)
Envejecimiento/fisiología , Epidermis/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Queratinocitos/metabolismo , Animales , Apoptosis , Moléculas de Adhesión Celular/metabolismo , Puntos de Control del Ciclo Celular , Regulación hacia Abajo , Técnicas de Inactivación de Genes , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Integrinas/metabolismo , Queratinocitos/citología , Ratones , Fenotipo , Piel/anatomía & histología , Cicatrización de Heridas , Kalinina
6.
Gastroenterology ; 142(2): 281-91, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22062361

RESUMEN

BACKGROUND & AIMS: Studies in animal models have shown that bone marrow-derived cells (BMDC) could be involved in the formation of carcinomas of the upper gastrointestinal tract, including gastric carcinoma. Most gastric carcinomas in humans have been associated with chronic infection with Helicobacter pylori; we investigated the bacteria's potential to induce premalignant lesions in mice and studied the kinetics of BMDC settlement in the gastric epithelium. METHODS: C57BL/6J female chimeric mice with BMDCs from male donors that express green fluorescent protein were infected with human-derived and mouse-adapted strains of H pylori and followed. We assessed development of pathologic features and recruitment of BMDC to the gastric mucosa using immunohistochemistry and fluorescent in situ hybridization analyses of gastric tissue sections. RESULTS: Infection of mice with different strains of H pylori led to the development of chronic inflammation, hyperplasia, and mucinous metaplasia, and, later in life, of pseudointestinal metaplasia and dysplasia. After 1 year, gastric glands that contained green fluorescent protein-positive male cells were detected in 50%-90% of female chimeric mice infected with H pylori strains; the presence of these glands correlated with the development of pseudointestinal metaplasia. Twenty-two percent of H pylori-induced dysplastic lesions were composed of glands that contained epithelial BMDCs. CONCLUSIONS: H pylori infection leads to development of chronic inflammation, hyperplasia, metaplasia, and dysplasia, as well as the recruitment and accumulation of BMDC in the gastric epithelial mucosa. Nearly 25% of dysplastic lesions include cells that originate from the BM.


Asunto(s)
Células de la Médula Ósea/patología , Mucosa Gástrica/patología , Infecciones por Helicobacter/patología , Helicobacter pylori , Células Madre Neoplásicas/patología , Lesiones Precancerosas/microbiología , Neoplasias Gástricas/microbiología , Animales , Modelos Animales de Enfermedad , Femenino , Mucosa Gástrica/microbiología , Infecciones por Helicobacter/complicaciones , Hiperplasia/microbiología , Hibridación Fluorescente in Situ , Inflamación/microbiología , Inflamación/patología , Masculino , Metaplasia/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Lesiones Precancerosas/patología , Neoplasias Gástricas/patología
7.
Biochim Biophys Acta ; 1807(6): 609-19, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21167810

RESUMEN

Cancer cells utilize complex mechanisms to remodel their bioenergetic properties. We exploited the intrinsic genomic stability of xeroderma pigmentosum C (XPC) to understand the inter-relationships between genomic instability, reactive oxygen species (ROS) generation, and metabolic alterations during neoplastic transformation. We showed that knockdown of XPC (XPC(KD)) in normal human keratinocytes results in metabolism remodeling through NADPH oxidase-1 (NOX-1) activation, which in turn leads to increased ROS levels. While enforcing antioxidant defenses by overexpressing catalase, CuZnSOD, or MnSOD could not block the metabolism remodeling, impaired NOX-1 activation abrogates both alteration in ROS levels and modifications of energy metabolism. As NOX-1 activation is observed in human squamous cell carcinomas (SCCs), the blockade of NOX-1 could be a target for the prevention and the treatment of skin cancers.


Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Queratinocitos/metabolismo , NADPH Oxidasas/metabolismo , Interferencia de ARN , Especies Reactivas de Oxígeno/efectos adversos , Antioxidantes/metabolismo , Secuencia de Bases , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/fisiología , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Modelos Biológicos , Datos de Secuencia Molecular , NADPH Oxidasa 1 , NADPH Oxidasas/fisiología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Interferencia de ARN/efectos de los fármacos , Interferencia de ARN/fisiología , ARN Interferente Pequeño/farmacología , Especies Reactivas de Oxígeno/metabolismo , Homología de Secuencia de Ácido Nucleico
8.
Nucleic Acids Res ; 38(3): 797-809, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19934262

RESUMEN

The regulation of DNA repair enzymes is crucial for cancer prevention, initiation, and therapy. We have studied the effect of ultraviolet B (UVB) radiation on the expression of the two nucleotide excision repair factors (XPC and XPD) in human keratinocytes. We show that hypoxia-inducible factor-1alpha (HIF-1alpha) is involved in the regulation of XPC and XPD. Early UVB-induced downregulation of HIF-1alpha increased XPC mRNA expression due to competition between HIF-1alpha and Sp1 for their overlapping binding sites. Late UVB-induced enhanced phosphorylation of HIF-1alpha protein upregulated XPC mRNA expression by direct binding to a separate hypoxia response element (HRE) in the XPC promoter region. HIF-1alpha also regulated XPD expression by binding to a region of seven overlapping HREs in its promoter. Quantitative chromatin immunoprecipitation assays further revealed putative HREs in the genes encoding other DNA repair proteins (XPB, XPG, CSA and CSB), suggesting that HIF-1alpha is a key regulator of the DNA repair machinery. Analysis of the repair kinetics of 6-4 photoproducts and cyclobutane pyrimidine dimers also revealed that HIF-1alpha downregulation led to an increased rate of immediate removal of both photolesions but attenuated their late removal following UVB irradiation, indicating the functional effects of HIF-1alpha in the repair of UVB-induced DNA damage.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Queratinocitos/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo , Unión Competitiva , Células Cultivadas , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Queratinocitos/efectos de la radiación , Regiones Promotoras Genéticas , Elementos de Respuesta , Factor de Transcripción Sp1/metabolismo , Rayos Ultravioleta
9.
Mutat Res Rev Mutat Res ; 789: 108400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35690409

RESUMEN

Xeroderma pigmentosum group C protein (XPC) acts as a DNA damage recognition factor for bulky adducts and as an initiator of global genome nucleotide excision repair (GG-NER). Novel insights have shown that the role of XPC is not limited to NER, but is also implicated in DNA damage response (DDR), as well as in cell fate decisions upon stress. Moreover, XPC has a proteolytic role through its interaction with p53 and casp-2S. XPC is also able to determine cellular outcomes through its interaction with downstream proteins, such as p21, ARF, and p16. XPC interactions with effector proteins may drive cells to various fates such as apoptosis, senescence, or tumorigenesis. In this review, we explore XPC's involvement in different molecular pathways in the cell and suggest that XPC can be considered not only as a genomic caretaker and gatekeeper but also as a tumor suppressor and cellular-fate decision maker. These findings envisage that resistance to cell death, induced by DNA-damaging therapeutics, in highly prevalent P53-deficent tumors might be overcome through new therapeutic approaches that aim to activate XPC in these tumors. Moreover, this review encourages care providers to consider XPC status in cancer patients before chemotherapy in order to improve the chances of successful treatment and enhance patients' survival.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Linaje de la Célula , ADN/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Neoplasias/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
Cancers (Basel) ; 14(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35626090

RESUMEN

Acute myeloid leukemia (AML) is characterized by the accumulation of undifferentiated blast cells in the bone marrow and blood. In most cases of AML, relapse frequently occurs due to resistance to chemotherapy. Compelling research results indicate that drug resistance in cancer cells is highly dependent on the intracellular levels of reactive oxygen species (ROS). Modulating ROS levels is therefore a valuable strategy to overcome the chemotherapy resistance of leukemic cells. In this study, we evaluated the efficiency of diphenyleneiodonium (DPI)-a well-known inhibitor of ROS production-in targeting AML cells. Results showed that although inhibiting cytoplasmic ROS production, DPI also triggered an increase in the mitochondrial ROS levels, caused by the disruption of the mitochondrial respiratory chain. We also demonstrated that DPI blocks mitochondrial oxidative phosphorylation (OxPhos) in a dose-dependent manner, and that AML cells with high OxPhos status are highly sensitive to treatment with DPI, which synergizes with the chemotherapeutic agent cytarabine (Ara-C). Thus, our results suggest that targeting mitochondrial function with DPI might be exploited to target AML cells with high OxPhos status.

11.
Nat Med ; 9(7): 959-63, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12796774

RESUMEN

A major problem hampering effective stem cell-based therapies is the absence of a clear understanding of the human hematopoietic stem cell (HSC) pool composition. The severe combined immunodeficiency (SCID) repopulating cell (SRC) xenotransplant assay system provides a powerful tool for characterizing the frequency, cell surface markers, cell cycle status, homing and response to cytokine stimulation of human HSCs. Clonal tracking of retrovirally transduced SRCs and transplantation of specific subpopulations revealed SRC classes with distinct repopulation potentials. However, all HSC repopulation assays are based on intravenous injection, a complex process that requires circulation through blood, recognition and extravasation through bone marrow vasculature, and migration to a supportive microenvironment. Thus, some classes of HSCs may remain undetected. By direct intrafemoral injection, we identified rapid SRCs (R-SRCs) within the Lin-CD34+CD38loCD36- subpopulation. R-SRCs rapidly generate high levels of human myeloid and erythroid cells within the injected femur, migrate to the blood and colonize individual bones of non-obese diabetic (NOD)-SCID mice within 2 weeks after transplantation. Lentivector-mediated clonal analysis of individual R-SRCs revealed heterogeneity in their proliferative and migratory properties. The identification of a new HSC class and an effective intrafemoral assay provide the tools required to develop more effective stem cell-based therapies that rely on rapid reconstitution.


Asunto(s)
Células Precursoras Eritroides/citología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Biología Molecular/métodos , Células Mieloides/citología , ADP-Ribosil Ciclasa/metabolismo , ADP-Ribosil Ciclasa 1 , Animales , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Antígenos de Superficie/metabolismo , Antígenos CD36/metabolismo , Linaje de la Célula , Células Precursoras Eritroides/fisiología , Femenino , Fémur , Sangre Fetal/citología , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas/clasificación , Humanos , Inyecciones Intravenosas , Glicoproteínas de Membrana , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Mieloides/fisiología , Embarazo , Trasplante Heterólogo
12.
Cancers (Basel) ; 13(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067602

RESUMEN

Multiple myeloma (MM) is a common hematological disease characterized by the accumulation of clonal malignant plasma cells in the bone marrow. Over the past two decades, new therapeutic strategies have significantly improved the treatment outcome and patients survival. Nevertheless, most MM patients relapse underlying the need of new therapeutic approaches. Plasma cells are prone to produce large amounts of immunoglobulins causing the production of intracellular ROS. Although adapted to high level of ROS, MM cells die when exposed to drugs increasing ROS production either directly or by inhibiting antioxidant enzymes. In this review, we discuss the efficacy of ROS-generating drugs for inducing MM cell death and counteracting acquired drug resistance specifically toward proteasome inhibitors.

13.
Curr Med Chem ; 28(11): 2218-2233, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32900342

RESUMEN

Drug repurposing has lately received increasing interest in several diseases especially in cancers, due to its advantages in facilitating the development of new therapeutic strategies, by adopting a cost-friendly approach and avoiding the strict Food and Drug Administration (FDA) regulations. Acriflavine (ACF) is an FDA approved molecule that has been extensively studied since 1912 with antiseptic, trypanocidal, anti-viral, anti-bacterial and anti-cancer effects. ACF has been shown to block the growth of solid and hematopoietic tumor cells. Indeed, ACF acts as an inhibitor of various proteins, including DNA-dependent protein kinases C (DNA-PKcs), topoisomerase I and II, hypoxia-inducible factor 1α (HIF-1α), in addition to its recent discovery as an inhibitor of the signal transducer and activator of transcription (STAT). Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the expression of the constitutively active tyrosine kinase BCR-ABL. This protein allows the activation of several signaling pathways known for their role in cell proliferation and survival, such as the JAK/STAT pathway. CML therapy, based on tyrosine kinase inhibitors (TKIs), such as imatinib (IM), is highly effective. However, 15% of patients are refractory to IM, where in some cases, 20-30% of patients become resistant. Thus, we suggest the repurposing of ACF in CML after IM failure or in combination with IM to improve the anti-tumor effects of IM. In this review, we present the different pharmacological properties of ACF along with its anti-leukemic effects in the hope of its repurposing in CML therapy.


Asunto(s)
Acriflavina , Leucemia Mielógena Crónica BCR-ABL Positiva , Apoptosis , Reposicionamiento de Medicamentos , Resistencia a Antineoplásicos , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología
14.
Blood Adv ; 5(2): 513-526, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33496749

RESUMEN

Resistance to chemotherapy, a major therapeutic challenge in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), can be driven by interactions between leukemic cells and the microenvironment that promote survival of leukemic cells. The bone marrow, an important leukemia niche, has low oxygen partial pressures that highly participate in the regulation of normal hematopoiesis. Here we show that hypoxia inhibits T-ALL cell growth by slowing down cell cycle progression, decreasing mitochondria activity, and increasing glycolysis, making them less sensitive to antileukemic drugs and preserving their ability to initiate leukemia after treatment. Activation of the mammalian target of rapamycin (mTOR) was diminished in hypoxic leukemic cells, and treatment of T-ALL with the mTOR inhibitor rapamycin in normoxia mimicked the hypoxia effects, namely decreased cell growth and increased quiescence and drug resistance. Knocking down (KD) hypoxia-induced factor 1α (HIF-1α), a key regulator of the cellular response to hypoxia, antagonized the effects observed in hypoxic T-ALL and restored chemosensitivity. HIF-1α KD also restored mTOR activation in low O2 concentrations, and inhibiting mTOR in HIF1α KD T-ALL protected leukemic cells from chemotherapy. Thus, hypoxic niches play a protective role of T-ALL during treatments. Inhibition of HIF-1α and activation of the mTORC1 pathway may help suppress the drug resistance of T-ALL in hypoxic niches.


Asunto(s)
Preparaciones Farmacéuticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Resistencia a Antineoplásicos , Humanos , Hipoxia , Diana Mecanicista del Complejo 1 de la Rapamicina , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Microambiente Tumoral
15.
Antioxidants (Basel) ; 10(3)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33807114

RESUMEN

In acute myeloid leukemia (AML), a low level of reactive oxygen species (ROS) is associated with leukemic stem cell (LSC) quiescence, whereas a high level promotes blast proliferation. ROS homeostasis relies on a tightly-regulated balance between the antioxidant and oxidant systems. Among the oxidants, NADPH oxidases (NOX) generate ROS as a physiological function. Although it has been reported in AML initiation and development, the contribution of NOX to the ROS production in AML remains to be clarified. The aim of this study was to investigate the NOX expression and function in AML, and to examine the role of NOX in blast proliferation and differentiation. First, we interrogated the NOX expression in primary cells from public datasets, and investigated their association with prognostic markers. Next, we explored the NOX expression and activity in AML cell lines, and studied the impact of NOX knockdown on cell proliferation and differentiation. We found that NOX2 is ubiquitously expressed in AML blasts, and particularly in cells from the myelomonocytic (M4) and monocytic (M5) stages; however, it is less expressed in LSCs and in relapsed AML. This is consistent with an increased expression throughout normal hematopoietic differentiation, and is reflected in AML cell lines. Nevertheless, no endogenous NOX activity could be detected in the absence of PMA stimulation. Furthermore, CYBB knockdown, although hampering induced NOX2 activity, did not affect the proliferation and differentiation of THP-1 and HL-60 cells. In summary, our data suggest that NOX2 is a marker of AML blast differentiation, while AML cell lines lack any NOX2 endogenous activity.

16.
J Gene Med ; 12(8): 637-46, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20586119

RESUMEN

BACKGROUND: Congenital erythropoietic porphyria (CEP) is a severe autosomal recessive disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. We recently demonstrated the definitive cure of a murine model of CEP by lentiviral vector-mediated hematopoietic stem cell (HSC) gene therapy. In the perspective of a gene therapy clinical trial, human cellular models are required to evaluate the therapeutic potential of lentiviral vectors in UROS-deficient cells. However, the rare incidence of the disease makes difficult the availability of HSCs derived from patients. METHODS: RNA interference (RNAi) has been used to develop a new human model of the disease from normal cord blood HSCs. Lentivectors were developed for this purpose. RESULTS: We were able to down-regulate the level of human UROS in human cell lines and primary hematopoietic cells. A 97% reduction of UROS activity led to spontaneous uroporphyrin accumulation in human erythroid bone marrow cells of transplanted immune-deficient mice, recapitulating the phenotype of cells derived from patients. A strong RNAi-induced UROS inhibition allowed us to test the efficiency of different lentiviral vectors with the aim of selecting a safer vector. Restoration of UROS activity in these small hairpin RNA-transduced CD34(+) cord blood cells by therapeutic lentivectors led to a partial correction of the phenotype in vivo. CONCLUSIONS: The RNAi strategy is an interesting new tool for preclinical gene therapy evaluation.


Asunto(s)
Terapia Genética/métodos , Porfiria Eritropoyética/terapia , Interferencia de ARN , Animales , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas/metabolismo , Humanos , Células K562 , Lentivirus/genética , Lentivirus/metabolismo , Ratones , Porfiria Eritropoyética/enzimología , Porfiria Eritropoyética/genética , Uroporfirinógeno III Sintetasa/genética , Uroporfirinógeno III Sintetasa/metabolismo
17.
Blood ; 112(6): 2429-38, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18612101

RESUMEN

The JAK2V617F somatic point mutation has been described in patients with myeloproliferative disorders (MPDs). Despite this progress, it remains unknown how a single JAK2 mutation causes 3 different MPD phenotypes, polycythemia vera (PV), essential thrombocythemia, and primitive myelofibrosis (PMF). Using an in vivo xenotransplantation assay in nonobese diabetic-severe combined immunodeficient (NOD/SCID) mice, we tested whether disease heterogeneity was associated with quantitative or qualitative differences in the hematopoietic stem cell (HSC) compartment. We show that the HSC compartment of PV and PMF patients contains JAK2V617F-positive long-term, multipotent, and self-renewing cells. However, the proportion of JAK2V617F and JAK2 wild-type SCID repopulating cells was dramatically different in these diseases, without major modifications of the self-renewal and proliferation capacities for JAK2V617F SCID repopulating cells. These experiments provide new insights into the pathogenesis of JAK2V617F MPD and demonstrate that a JAK2 inhibitor needs to target the HSC compartment for optimal disease control in classical MPD.


Asunto(s)
Células Madre Hematopoyéticas/patología , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/patología , Animales , Proliferación Celular , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Ratones SCID , Mutación Missense , Trastornos Mieloproliferativos/genética , Fenotipo , Policitemia Vera/genética , Policitemia Vera/patología , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/patología , Trasplante Heterólogo
18.
Blood Adv ; 4(20): 5322-5335, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33108456

RESUMEN

Advances in transcriptomics have improved our understanding of leukemic development and helped to enhance the stratification of patients. The tendency of transcriptomic studies to combine AML samples, regardless of cytogenetic abnormalities, could lead to bias in differential gene expression analysis because of the differential representation of AML subgroups. Hence, we performed a horizontal meta-analysis that integrated transcriptomic data on AML from multiple studies, to enrich the less frequent cytogenetic subgroups and to uncover common genes involved in the development of AML and response to therapy. A total of 28 Affymetrix microarray data sets containing 3940 AML samples were downloaded from the Gene Expression Omnibus database. After stringent quality control, transcriptomic data on 1534 samples from 11 data sets, covering 10 AML cytogenetically defined subgroups, were retained and merged with the data on 198 healthy bone marrow samples. Differentially expressed genes between each cytogenetic subgroup and normal samples were extracted, enabling the unbiased identification of 330 commonly deregulated genes (CODEGs), which showed enriched profiles of myeloid differentiation, leukemic stem cell status, and relapse. Most of these genes were downregulated, in accordance with DNA hypermethylation. CODEGs were then used to create a prognostic score based on the weighted sum of expression of 22 core genes (CODEG22). The score was validated with microarray data of 5 independent cohorts and by quantitative real time-polymerase chain reaction in a cohort of 142 samples. CODEG22-based stratification of patients, globally and into subpopulations of cytologically healthy and elderly individuals, may complement the European LeukemiaNet classification, for a more accurate prediction of AML outcomes.


Asunto(s)
Leucemia Mieloide Aguda , Anciano , Citogenética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Análisis por Micromatrices , Recurrencia Local de Neoplasia , Pronóstico
19.
PLoS One ; 15(6): e0225485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32484831

RESUMEN

Mesenchymal stem cells (MSC)-spheroid models favor maintenance of stemness, ex vivo expansion and transplantation efficacy. Spheroids may also be considered as useful surrogate models of the hematopoietic niche. However, accessibility to primary cells, from bone marrow (BM) or adipose tissues, may limit their experimental use and the lack of consistency in methods to form spheroids may affect data interpretation. In this study, we aimed to create a simple model by examining the ability of cell lines, from human (HS-27a and HS-5) and murine (MS-5) BM origins, to form spheroids, compared to primary human MSCs (hMSCs). Our protocol efficiently allowed the spheroid formation from all cell types within 24 hours. Whilst hMSC-spheroids began to shrink after 24 hours, the size of spheroids from cell lines remained constant during three weeks. The difference was partially explained by the balance between proliferation and cell death, which could be triggered by hypoxia and induced oxidative stress. Our results demonstrate that, like hMSCs, MSC cell lines make reproductible spheroids that are easily handled. Thus, this model could help in understanding mechanisms involved in MSC functions and may provide a simple model by which to study cell interactions in the BM niche.


Asunto(s)
Células Madre Mesenquimatosas/citología , Esferoides Celulares/citología , Animales , Agregación Celular , Muerte Celular , Desdiferenciación Celular , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Humanos , Ratones , Estrés Oxidativo
20.
Oncogene ; 39(10): 2227, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31700154

RESUMEN

The original version of this Article omitted the following from the Acknowledgements: This research was also supported by grants to KZ (UL and L-CNRS). This has now been corrected in both the PDF and HTML versions of the Article.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA