Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Int J Mol Sci ; 23(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563538

RESUMEN

Cullin 3 (CUL3) is the scaffold of Cullin3 Ring E3-ligases (CRL3s), which use various BTB-adaptor proteins to ubiquitinate numerous substrates targeting their proteasomal degradation. CUL3 mutations, responsible for a severe form of familial hyperkalemia and hypertension (FHHt), all result in a deletion of exon 9 (amino-acids 403-459) (CUL3-∆9). Surprisingly, while CUL3-∆9 is hyperneddylated, a post-translational modification that typically activates CRL complexes, it is unable to ubiquitinate its substrates. In order to understand the mechanisms behind this loss-of function, we performed comparative label-free quantitative analyses of CUL3 and CUL3-∆9 interactome by mass spectrometry. It was observed that CUL3-∆9 interactions with COP9 and CAND1, both involved in CRL3 complexes' dynamic assembly, were disrupted. These defects result in a reduction in the dynamic cycling of the CRL3 complexes, making the CRL3-∆9 complex an inactive BTB-adaptor trap, as demonstrated by SILAC experiments. Collectively, the data indicated that the hyperneddylated CUL3-∆9 protein is inactive as a consequence of several structural changes disrupting its dynamic interactions with key regulatory partners.


Asunto(s)
Proteínas Cullin/genética , Hipertensión , Seudohipoaldosteronismo , Proteínas Cullin/metabolismo , Exones/genética , Femenino , Humanos , Hipertensión/genética , Masculino , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Ubiquitina-Proteína Ligasas/genética
2.
Kidney Int Rep ; 6(10): 2639-2652, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34622103

RESUMEN

INTRODUCTION: Familial hyperkalemic hypertension is a rare inherited form of arterial hypertension. Four genes are responsible for this disease, the variants of these genes cause disruption in the regulation of ion transport in the distal renal tubule. Whether the genotype explains the large phenotypic heterogeneity has not been fully explored. METHODS: We retrospectively analyzed clinical and genetic data of 153 cases (84 probands, 69 relatives) with familial hyperkalemic hypertension. RESULTS: Pathogenic variants (25 novel variants) were identified as follows: KLHL3 (n = 50), CUL3 (n = 16), WNK1 acidic motif (n = 11), WNK4 acidic motif (n = 4) and WNK1 intron 1 deletions (n = 3). De novo cases were mainly observed in the CUL3-related cases (9 of 12) and recessive cases were only observed in KLHL3-related cases (14 of 50). More severe forms were observed in recessive KLHL3 and CUL3 cases that were also associated with growth retardation. Patients with WNK1 acidic motif variants had a typical biological phenotype and lower frequency of hypertension conversely to WNK4 variants affecting the same motif. Patients with heterozygous KLHL3 and WNK1 deletions had milder forms. Familial screening in 178 relatives allowed detection and care for 69 positive cases. Blood pressure and hyperkalemia were improved by hydrochlorothiazide in all groups. CONCLUSIONS: This study confirms the phenotypic variability ranging from the severe and early forms associated with CUL3 and recessive KLHL3 genotypes through intermediate forms associated with KLHL3 dominant, WNK4 and WNK1 deletion to mild form associated with WNK1 acidic motif genotype and reinforces the interest of genetic screening to better orientate medical care and genetic counseling.

3.
J Am Coll Cardiol ; 73(1): 58-66, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30621952

RESUMEN

BACKGROUND: Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of acute coronary syndromes (ACS) afflicting predominantly younger to middle-aged women. Observational studies have reported a high prevalence of extracoronary vascular anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of coincidental cases of atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, including FMD and coronary artery disease, with the putative causal noncoding variant at the rs9349379 locus acting as a potential enhancer for the endothelin-1 (EDN1) gene. OBJECTIVES: This study sought to test the association between the rs9349379 genotype and SCAD. METHODS: Results from case control studies from France, United Kingdom, United States, and Australia were analyzed to test the association with SCAD risk, including age at first event, pregnancy-associated SCAD (P-SCAD), and recurrent SCAD. RESULTS: The previously reported risk allele for FMD (rs9349379-A) was associated with a higher risk of SCAD in all studies. In a meta-analysis of 1,055 SCAD patients and 7,190 controls, the odds ratio (OR) was 1.67 (95% confidence interval [CI]: 1.50 to 1.86) per copy of rs9349379-A. In a subset of 491 SCAD patients, the OR estimate was found to be higher for the association with SCAD in patients without FMD (OR: 1.89; 95% CI: 1.53 to 2.33) than in SCAD cases with FMD (OR: 1.60; 95% CI: 1.28 to 1.99). There was no effect of genotype on age at first event, P-SCAD, or recurrence. CONCLUSIONS: The first genetic risk factor for SCAD was identified in the largest study conducted to date for this condition. This genetic link may contribute to the clinical overlap between SCAD and FMD.


Asunto(s)
Anomalías de los Vasos Coronarios/epidemiología , Anomalías de los Vasos Coronarios/genética , Endotelina-1/genética , Displasia Fibromuscular/complicaciones , Sitios Genéticos/genética , Proteínas de Microfilamentos/genética , Enfermedades Vasculares/congénito , Adulto , Anciano , Australia , Estudios de Casos y Controles , Anomalías de los Vasos Coronarios/complicaciones , Femenino , Displasia Fibromuscular/genética , Francia , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Reino Unido , Estados Unidos , Enfermedades Vasculares/complicaciones , Enfermedades Vasculares/epidemiología , Enfermedades Vasculares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA