RESUMEN
PURPOSE OF REVIEW: We review the role of uromodulin, a protein exclusively expressed in the kidney, in blood pressure regulation and hypertension. RECENT FINDINGS: The last few years have seen a shift of focus from genetic association to mendelian randomisation and uromodulin-salt interaction studies, thus confirming the causal role of uromodulin in blood pressure regulation and hypertension. This work has been complemented by phenome-wide association studies in a wider range of ethnicities. Important recent molecular work elucidated uromodulin trafficking and secretion and provided more insights into the pathophysiological roles of circulating and urinary uromodulin. Uromodulin has a causal role in blood pressure regulation and hypertensin. Recent studies show utility of the uromodulin as a biomarker and a possible precision medicine application based on genetically determined differential responses to loop diuretics.
Asunto(s)
Presión Sanguínea , Hipertensión , Uromodulina , Uromodulina/genética , Humanos , Hipertensión/fisiopatología , Hipertensión/genética , Presión Sanguínea/fisiología , BiomarcadoresRESUMEN
During pregnancy, the uterine spiral arteries undergo major vascular remodeling to ensure sufficient uteroplacental perfusion to support the fetus. In pregnancies complicated by hypertensive disorders, this remodeling is deficient leading to impaired uteroplacental blood flow and poor maternal and fetal outcomes. The underlying genetic mechanisms for failed vascular remodeling are not fully understood. This study aimed to examine the early-pregnancy-associated gene changes in the uterine arteries of spontaneously hypertensive stroke-prone rats (SHRSP) compared with their normotensive counterparts, Wistar-Kyoto rats (WKY). Uterine arteries from gestational day 6.5 WKY and SHRSP were processed for RNA-sequencing, along with virgin, age-matched controls for each strain. Gene expression changes were identified and biological pathways were implicated and interpretated using ingenuity pathway analysis (IPA). This study found that WKY uterine arteries from early pregnancy exhibit a gene expression pattern that is suggestive of a pregnancy-dependent reduction in Ca2+ handling and renin-angiotensin-aldosterone system (RAAS) components and an increase in ATP production. In contrast, the expression pattern of pregnant SHRSP uterine arteries was dominated by an elevated immune response and increased production of reactive oxygen species (ROS) and downstream effectors of the RAAS. These results suggest that in a rat model, hypertension during pregnancy impacts uterine artery gene expression patterns as early as the first week of pregnancy. The pathway changes involved may underlie or contribute to the adverse vascular remodeling and resultant placental ischemia and systemic vascular dysfunction observed in SHRSP in late gestation.
Asunto(s)
Hipertensión , Accidente Cerebrovascular , Animales , Femenino , Placenta/metabolismo , Embarazo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Accidente Cerebrovascular/etiología , Transcriptoma/genética , Arteria Uterina/metabolismoRESUMEN
Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.
Asunto(s)
MicroARNs/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , MicroARNs/genética , Preeclampsia/genética , EmbarazoRESUMEN
BACKGROUND: Myocardial infarction (MI) is a leading cause of heart failure and death worldwide. Preservation of contractile function and protection against adverse changes in ventricular architecture (cardiac remodeling) are key factors to limiting progression of this condition to heart failure. Consequently, new therapeutic targets are urgently required to achieve this aim. Expression of the Runx1 transcription factor is increased in adult cardiomyocytes after MI; however, the functional role of Runx1 in the heart is unknown. METHODS: To address this question, we have generated a novel tamoxifen-inducible cardiomyocyte-specific Runx1-deficient mouse. Mice were subjected to MI by means of coronary artery ligation. Cardiac remodeling and contractile function were assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. RESULTS: Runx1-deficient mice were protected against adverse cardiac remodeling after MI, maintaining ventricular wall thickness and contractile function. Furthermore, these mice lacked eccentric hypertrophy, and their cardiomyocytes exhibited markedly improved calcium handling. At the mechanistic level, these effects were achieved through increased phosphorylation of phospholamban by protein kinase A and relief of sarco/endoplasmic reticulum Ca2+-ATPase inhibition. Enhanced sarco/endoplasmic reticulum Ca2+-ATPase activity in Runx1-deficient mice increased sarcoplasmic reticulum calcium content and sarcoplasmic reticulum-mediated calcium release, preserving cardiomyocyte contraction after MI. CONCLUSIONS: Our data identified Runx1 as a novel therapeutic target with translational potential to counteract the effects of adverse cardiac remodeling, thereby improving survival and quality of life among patients with MI.
Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/deficiencia , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Fosforilación , Conejos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Factores de TiempoRESUMEN
Previously, our comprehensive cardiovascular characterization study validated Uromodulin as a blood pressure gene. Uromodulin is a glycoprotein exclusively synthesized at the thick ascending limb of the loop of Henle and is encoded by the Umod gene. Umod-/- mice have significantly lower blood pressure than Umod+/+ mice, are resistant to salt-induced changes in blood pressure, and show a leftward shift in pressure-natriuresis curves reflecting changes of sodium reabsorption. Salt stress triggers transcription factors and genes that alter renal sodium reabsorption. To date there are no studies on renal transcriptome responses to salt stress. Here we aimed use RNA-Seq to delineate salt stress pathways in tubules isolated from Umod+/+ mice (a model of sodium retention) and Umod-/- mice (a model of sodium depletion) ± 300 mosmol sodium chloride ( n = 3 per group). In response to salt stress, the tubules of Umod+/+ mice displayed an upregulation of heat shock transcripts. The greatest changes occurred in the expression of: Hspa1a (Log2 fold change 4.35, P = 2.48 e-12) and Hspa1b (Log2 fold change 4.05, P = 2.48 e-12). This response was absent in tubules of Umod-/- mice. Interestingly, seven of the genes discordantly expressed in the Umod-/- tubules were electrolyte transporters. Our results are the first to show that salt stress in renal tubules alters the transcriptome, increasing the expression of heat shock genes. This direction of effect in Umod+/+ tubules suggest the difference is due to the presence of Umod facilitating greater sodium entry into the tubule cell reflecting a specific response to salt stress.
Asunto(s)
Respuesta al Choque Térmico/genética , Túbulos Renales/fisiología , Estrés Salino/genética , Uromodulina/genética , Animales , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Asa de la Nefrona/fisiología , Masculino , Ratones Mutantes , Regulación hacia ArribaRESUMEN
BACKGROUND: The effect of salt on cerebral small vessel disease (SVD) is poorly understood. We assessed the effect of dietary salt on cerebral tissue of the stroke-prone spontaneously hypertensive rat (SHRSP) - a relevant model of sporadic SVD - at both the gene and protein level. Methods: Brains from 21-week-old SHRSP and Wistar-Kyoto rats, half additionally salt-loaded (via a 3-week regime of 1% NaCl in drinking water), were split into two hemispheres and sectioned coronally - one hemisphere for mRNA microarray and qRT-PCR, the other for immunohistochemistry using a panel of antibodies targeting components of the neurovascular unit. Results: We observed differences in gene and protein expression affecting the acute phase pathway and oxidative stress (ALB, AMBP, APOH, AHSG and LOC100129193, up-regulated in salt-loaded WKY versus WKY, >2-fold), active microglia (increased Iba-1 protein expression in salt-loaded SHRSP versus salt-loaded WKY, p<0.05), vascular structure (ACTB and CTNNB, up-regulated in salt-loaded SHRSP versus SHRSP, >3-fold; CLDN-11, VEGF and VGF down-regulated >2-fold in salt-loaded SHRSP versus SHRSP) and myelin integrity (MBP down-regulated in salt loaded WKY rats versus WKY, >2.5-fold). Changes of salt-loading were more pronounced in SHRSP and occurred without an increase in blood pressure in WKY rats. CONCLUSION: Salt exposure induced changes in gene and protein expression in an experimental model of SVD and its parent rat strain in multiple pathways involving components of the glio-vascular unit. Further studies in pertinent experimental models at different ages would help clarify the short- and long-term effect of dietary salt in SVD.
Asunto(s)
Encéfalo/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Cloruro de Sodio Dietético/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Estrés Oxidativo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Preeclampsia is a multisystem disease that significantly contributes to maternal and fetal morbidity and mortality. In this study, we used a non-biased microarray approach to identify dysregulated genes in maternal whole blood samples which may be associated with the development of preeclampsia. Whole blood samples were obtained at 28 wk of gestation from 5 women who later developed preeclampsia (cases) and 10 matched women with normotensive pregnancies (controls). Placenta samples were obtained from an independent cohort of 19 women with preeclampsia matched with 19 women with normotensive pregnancies. We studied gene expression profiles using Illumina microarray in blood and validated changes in gene expression in whole blood and placenta tissue by qPCR. We found a transcriptional profile differentiating cases from controls; 336 genes were significantly dysregulated in blood from women who developed preeclampsia. Functional annotation of microarray results indicated that most of the genes found to be dysregulated were involved in inflammatory pathways. While general trends were preserved, only HLA-A was validated in whole blood samples from cases using qPCR (2.30- ± 0.9-fold change) whereas in placental tissue HLA-DRB1 expression was found to be significantly increased in samples from women with preeclampsia (5.88- ± 2.24-fold change). We have identified that HLA-A is upregulated in the circulation of women who went on to develop preeclampsia. In placenta of women with preeclampsia we identified that HLA-DRB1 is upregulated. Our data provide further evidence for involvement of the HLA gene family in the pathogenesis of preeclampsia.
Asunto(s)
Regulación de la Expresión Génica , Antígenos HLA/genética , Placenta/metabolismo , Preeclampsia/sangre , Preeclampsia/genética , Adulto , Femenino , Antígenos HLA/metabolismo , Humanos , Embarazo , Transcriptoma , Regulación hacia Arriba/genéticaRESUMEN
BACKGROUND: Phenotypic switching of vascular smooth muscle cells from a contractile to a synthetic state is implicated in diverse vascular pathologies, including atherogenesis, plaque stabilization, and neointimal hyperplasia. However, very little is known about the role of long noncoding RNA (lncRNA) during this process. Here, we investigated a role for lncRNAs in vascular smooth muscle cell biology and pathology. METHODS AND RESULTS: Using RNA sequencing, we identified >300 lncRNAs whose expression was altered in human saphenous vein vascular smooth muscle cells following stimulation with interleukin-1α and platelet-derived growth factor. We focused on a novel lncRNA (Ensembl: RP11-94A24.1), which we termed smooth muscle-induced lncRNA enhances replication (SMILR). Following stimulation, SMILR expression was increased in both the nucleus and cytoplasm, and was detected in conditioned media. Furthermore, knockdown of SMILR markedly reduced cell proliferation. Mechanistically, we noted that expression of genes proximal to SMILR was also altered by interleukin-1α/platelet-derived growth factor treatment, and HAS2 expression was reduced by SMILR knockdown. In human samples, we observed increased expression of SMILR in unstable atherosclerotic plaques and detected increased levels in plasma from patients with high plasma C-reactive protein. CONCLUSIONS: These results identify SMILR as a driver of vascular smooth muscle cell proliferation and suggest that modulation of SMILR may be a novel therapeutic strategy to reduce vascular pathologies.
Asunto(s)
Proliferación Celular/fisiología , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , ARN Largo no Codificante/fisiología , Proteínas de Caenorhabditis elegans , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Músculo Liso Vascular/citología , Vena Safena/citología , Vena Safena/fisiologíaRESUMEN
Recombinant human erythropoietin (rHuEPO) is frequently abused by athletes as a performance-enhancing drug, despite being prohibited by the World Anti-Doping Agency. Although the methods to detect blood doping, including rHuEPO injections, have improved in recent years, they remain imperfect. In a proof-of-principle study, we identified, replicated, and validated the whole blood transcriptional signature of rHuEPO in endurance-trained Caucasian males at sea level (n = 18) and Kenyan endurance runners at moderate altitude (n = 20), all of whom received rHuEPO injections for 4 wk. Transcriptional profiling shows that hundreds of transcripts were altered by rHuEPO in both cohorts. The main regulated expression pattern, observed in all participants, was characterized by a "rebound" effect with a profound upregulation during rHuEPO and a subsequent downregulation up to 4 wk postadministration. The functions of the identified genes were mainly related to the functional and structural properties of the red blood cell. Of the genes identified to be differentially expressed during and post-rHuEPO, we further confirmed a whole blood 34-transcript signature that can distinguish between samples collected pre-, during, and post-rHuEPO administration. By providing biomarkers that can reveal rHuEPO use, our findings represent an advance in the development of new methods for the detection of blood doping.
Asunto(s)
Doping en los Deportes/prevención & control , Eritropoyetina/sangre , Eritropoyetina/genética , Proteínas Recombinantes/sangre , Proteínas Recombinantes/genética , Adulto , Eritropoyetina/administración & dosificación , Eritropoyetina/biosíntesis , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/biosíntesis , Transcripción GenéticaRESUMEN
AIMS: Cerebral small vessel disease (SVD) causes a fifth of all strokes plus diffuse brain damage leading to cognitive decline, physical disabilities and dementia. The aetiology and pathogenesis of SVD are unknown, but largely attributed to hypertension or microatheroma. METHODS: We used the spontaneously hypertensive stroke-prone rat (SHRSP), the closest spontaneous experimental model of human SVD, and age-matched control rats kept under identical, non-salt-loaded conditions, to perform a blinded analysis of mRNA microarray, qRT-PCR and pathway analysis in two brain regions (frontal and mid-coronal) commonly affected by SVD in the SHRSP at age five, 16 and 21 weeks. RESULTS: We found gene expression abnormalities, with fold changes ranging from 2.5 to 59 for the 10 most differentially expressed genes, related to endothelial tight junctions (reduced), nitric oxide bioavailability (reduced), myelination (impaired), glial and microglial activity (increased), matrix proteins (impaired), vascular reactivity (impaired) and albumin (reduced), consistent with protein expression defects in the same rats. All were present at age 5 weeks thus predating blood pressure elevation. 'Neurological' and 'inflammatory' pathways were more affected than 'vascular' functional pathways. CONCLUSIONS: This set of defects, although individually modest, when acting in combination could explain the SHRSP's susceptibility to microvascular and brain injury, compared with control rats. Similar combined, individually modest, but multiple neurovascular unit defects, could explain susceptibility to spontaneous human SVD.
Asunto(s)
Encéfalo/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/genética , Animales , Tejido Conectivo/metabolismo , Modelos Animales de Enfermedad , Encefalitis/complicaciones , Encefalitis/genética , Expresión Génica , Humanos , Masculino , Enfermedades del Sistema Nervioso/complicaciones , Enfermedades del Sistema Nervioso/genética , Análisis por Matrices de Proteínas , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas SHRRESUMEN
AIMS: Myocardial infarction (MI) is a major cause of death worldwide. Effective treatments are required to improve recovery of cardiac function following MI, with the aim of improving patient outcomes and preventing progression to heart failure. The perfused but hypocontractile region bordering an infarct is functionally distinct from the remote surviving myocardium and is a determinant of adverse remodelling and cardiac contractility. Expression of the transcription factor RUNX1 is increased in the border zone 1-day after MI, suggesting potential for targeted therapeutic intervention. OBJECTIVE: This study sought to investigate whether an increase in RUNX1 in the border zone can be therapeutically targeted to preserve contractility following MI. METHODS AND RESULTS: In this work we demonstrate that Runx1 drives reductions in cardiomyocyte contractility, calcium handling, mitochondrial density, and expression of genes important for oxidative phosphorylation. Both tamoxifen-inducible Runx1-deficient and essential co-factor common ß subunit (Cbfß)-deficient cardiomyocyte-specific mouse models demonstrated that antagonizing RUNX1 function preserves the expression of genes important for oxidative phosphorylation following MI. Antagonizing RUNX1 expression via short-hairpin RNA interference preserved contractile function following MI. Equivalent effects were obtained with a small molecule inhibitor (Ro5-3335) that reduces RUNX1 function by blocking its interaction with CBFß. CONCLUSIONS: Our results confirm the translational potential of RUNX1 as a novel therapeutic target in MI, with wider opportunities for use across a range of cardiac diseases where RUNX1 drives adverse cardiac remodelling.
Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Ratones , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Insuficiencia Cardíaca/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/prevención & control , Infarto del Miocardio/tratamiento farmacológico , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Remodelación VentricularRESUMEN
Astrocytes undergo major phenotypic changes in response to injury and disease that directly influence repair in the CNS, but the mechanisms involved are poorly understood. Previously, we have shown that neurosphere-derived rat astrocytes plated on poly-L-lysine (PLL-astrocytes) support myelination in dissociated rat spinal cord cultures (myelinating cultures). It is hypothesized that astrocyte reactivity can affect myelination, so we have exploited this culture system to ascertain how two distinct astrocyte phenotypes influence myelination. Astrocytes plated on tenascin C (TnC-astrocytes), a method to induce quiescence, resulted in less myelinated fibers in the myelinating cultures when compared with PLL-astrocytes. In contrast, treatment of myelinating cultures plated on PLL-astrocytes with ciliary neurotrophic factor (CNTF), a cytokine known to induce an activated astrocyte phenotype, promoted myelination. CNTF could also reverse the effect of quiescent astrocytes on myelination. A combination of microarray gene expression analysis and quantitative real-time PCR identified CXCL10 as a potential candidate for the reduction in myelination in cultures on TnC-astrocytes. The effect of TnC-astrocytes on myelination was eliminated by neutralizing CXCL10 antibodies. Conversely, CXCL10 protein inhibited myelination on PLL-astrocytes. Furthermore, CXCL10 treatment of purified oligodendrocyte precursor cells did not affect proliferation, differentiation, or process extension compared with untreated controls, suggesting a role in glial/axonal ensheathment. These data demonstrate a direct correlation of astrocyte phenotypes with their ability to support myelination. This observation has important implications with respect to the development of therapeutic strategies to promote CNS remyelination in demyelinating diseases.
Asunto(s)
Astrocitos/metabolismo , Quimiocina CXCL10/fisiología , Fibras Nerviosas Mielínicas/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Células Cultivadas , Factor Neurotrófico Ciliar/fisiología , Medios de Cultivo , Femenino , Masculino , Fibras Nerviosas Mielínicas/fisiología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Fenotipo , Polilisina/fisiología , Análisis por Matrices de Proteínas/métodos , Ratas , Ratas Sprague-DawleyRESUMEN
Transforming growth factor (TGF)-ß is one of the main fibrogenic cytokines that drives the pathophysiology of progressive renal scarring. MicroRNAs (miRNAs) are endogenous non-coding RNAs that post-transcriptionally regulate gene expression. We examined the role of TGF-ß-induced expression of miR-21, miRNAs in cell culture models and miRNA expression in relevant models of renal disease. In vitro, TGF-ß changed expression of miR-21, miR-214, and miR-145 in rat mesangial cells (CRL-2753) and miR-214, miR-21, miR-30c, miR-200b, and miR-200c during induction of epithelial-mesenchymal transition in rat tubular epithelial cells (NRK52E). miR-214 expression was robustly modulated in both cell types, whereas in tubular epithelial cells miR-21 was increased and miR-200b and miR-200c were decreased by 58% and 48%, respectively, in response to TGF-ß. TGF-ß receptor-1 was found to be a target of miR-200b/c and was down-regulated after overexpression of miR-200c. To assess the differential expression of these miRNAs in vivo, we used the anti-Thy1.1 mesangial glomerulonephritis model and the unilateral ureteral obstruction model in which TGF-ß plays a role and also a genetic model of hypertension, the stroke-prone spontaneously hypertensive rat with and without salt loading. The expressions of miR-214 and miR-21 were significantly increased in all in vivo models, showing a possible miRNA signature of renal damage despite differing causes.
Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Animales , Modelos Animales de Enfermedad , Glomerulonefritis/metabolismo , Hipertensión/patología , Riñón/lesiones , Riñón/metabolismo , Glomérulos Renales/metabolismo , Túbulos Renales/metabolismo , Masculino , Ratas , Ratas Endogámicas WKY , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo , Uréter/patologíaRESUMEN
This article describes and illustrates a novel method of microarray data analysis that couples model-based clustering and binary classification to form clusters of `response-relevant' genes; that is, genes that are informative when discriminating between the different values of the response. Predictions are subsequently made using an appropriate statistical summary of each gene cluster, which we call the `meta-covariate' representation of the cluster, in a probit regression model. We first illustrate this method by analysing a leukaemia expression dataset, before focusing closely on the meta-covariate analysis of a renal gene expression dataset in a rat model of salt-sensitive hypertension. We explore the biological insights provided by our analysis of these data. In particular, we identify a highly influential cluster of 13 genes--including three transcription factors (Arntl, Bhlhe41 and Npas2)-that is implicated as being protective against hypertension in response to increased dietary sodium. Functional and canonical pathway analysis of this cluster using Ingenuity Pathway Analysis implicated transcriptional activation and circadian rhythm signalling, respectively. Although we illustrate our method using only expression data, the method is applicable to any high-dimensional datasets. Expression data are available at ArrayExpress (accession number E-MEXP-2514) and code is available at http://www.dcs.gla.ac.uk/inference/metacovariateanalysis/.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Ritmo Circadiano/genética , Análisis por Conglomerados , Redes Reguladoras de Genes , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Riñón/metabolismo , Leucemia/genética , Leucemia/metabolismo , Ratas , Análisis de RegresiónRESUMEN
The exclusive expression of uromodulin in the kidneys has made it an intriguing protein in kidney and cardiovascular research. Genome-wide association studies discovered variants of uromodulin that are associated with chronic kidney diseases and hypertension. Urinary and circulating uromodulin levels reflect kidney and cardiovascular health as well as overall mortality. More recently, Mendelian randomization studies have shown that genetically driven levels of uromodulin have a causal and adverse effect on kidney function. On a mechanistic level, salt sensitivity is an important factor in the pathophysiology of hypertension, and uromodulin is involved in salt reabsorption via the NKCC2 (Na+-K+-2Cl- cotransporter) on epithelial cells of the ascending limb of loop of Henle. In this review, we provide an overview of the multifaceted physiology and pathophysiology of uromodulin including recent advances in its genetics; cellular trafficking; and mechanistic and clinical studies undertaken to understand the complex relationship between uromodulin, blood pressure, and kidney function. We focus on tubular sodium reabsorption as one of the best understood and pathophysiologically and clinically most important roles of uromodulin, which can lead to therapeutic interventions.
Asunto(s)
Estudio de Asociación del Genoma Completo , Hipertensión , Humanos , Uromodulina/genética , Uromodulina/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Presión Sanguínea/fisiología , Riñón/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/metabolismo , Cloruro de Sodio/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/genéticaRESUMEN
Essential hypertension affects 20 to 30% of the population worldwide and contributes significantly to cardiovascular mortality and morbidity. Heridability of blood pressure is around 15 to 40% but there are also substantial environmental factors affecting blood pressure variability. It is assumed that blood pressure is under the control of a large number of genes each of which has only relatively mild effects. It has therefore been difficult to discover the genes that contribute to blood pressure variation using traditional approaches including candidate gene studies and linkage studies. Animal models of hypertension, particularly in the rat, have led to the discovery of quantitative trait loci harbouring one or several hypertension related genes, but translation of these findings into human essential hypertension remains challenging. Recent development of genotyping technology made large scale genome-wide association studies possible. This approach and the study of monogenic forms of hypertension has led to the discovery of novel and robust candidate genes for human essential hypertension, many of which require functional analysis in experimental models.
Asunto(s)
Modelos Animales de Enfermedad , Hipertensión/genética , Animales , Estudio de Asociación del Genoma Completo , Humanos , Hipertensión/mortalidad , Hipertensión/fisiopatología , RatasRESUMEN
The structural integrity of cardiac cells is maintained by the Ca(2+)-dependent homophilic cell-cell adhesion of cadherins. N-cadherin is responsible for this adhesion under normal physiological conditions. The role of cadherins in adverse cardiac pathology is less clear. We studied the hearts of the stroke-prone spontaneously hypertensive (SHRSP) rat as a genetic model of cardiac hypertrophy and compared them to Wistar-Kyoto control animals. Western blotting of protein homogenates from 12-week old SHRSP animals indicated that similar levels of beta, gamma-, and alpha-catenin and T, N and R-cadherin were expressed in the control and SHRSP animals. However, dramatically higher levels of E-cadherin were detected in SHRSP animals compared to controls at 6, 12 and 18 weeks of age. This was confirmed by quantitative Taqman PCR and immunohistochemistry. E-cadherin was located at the intercalated disc of the myocytes in co-localisation with connexin 43. Adenoviral overexpression of E-cadherin in rat H9c2 cells and primary rabbit myocytes resulted in a significant reduction in myocyte cell diameter and breadth. E-cadherin overexpression resulted in re-localisation of beta-catenin to the cell surface particularly to cell-cell junctions. Subsequent immunohistochemistry of the hearts of WKY and SHRSP animals also revealed increased levels of beta-catenin in the intercalated disc in the SHRSP compared to WKY. Therefore, remodelling of the intercalated disc in the hearts of SHRSP animals may contribute to the altered function observed in these animals.
Asunto(s)
Cadherinas/metabolismo , Regulación de la Expresión Génica , Hipertensión/patología , Ratas Endogámicas SHR , Accidente Cerebrovascular/patología , Animales , Cardiomegalia/patología , Adhesión Celular , Hipertensión/metabolismo , Inmunohistoquímica/métodos , Miocitos Cardíacos/metabolismo , Conejos , Ratas , Ratas Endogámicas WKY , beta Catenina/metabolismoRESUMEN
Owing to the dynamic nature of the transcriptome, gene expression profiling is a promising tool for discovery of disease-related genes and biological pathways. In the present study, we examined gene expression in whole blood of 12 patients with CAD (coronary artery disease) and 12 healthy control subjects. Furthermore, ten patients with CAD underwent whole-blood gene expression analysis before and after the completion of a cardiac rehabilitation programme following surgical coronary revascularization. mRNA and miRNA (microRNA) were isolated for expression profiling. Gene expression analysis identified 365 differentially expressed genes in patients with CAD compared with healthy controls (175 up- and 190 down-regulated in CAD), and 645 in CAD rehabilitation patients (196 up- and 449 down-regulated post-rehabilitation). Biological pathway analysis identified a number of canonical pathways, including oxidative phosphorylation and mitochondrial function, as being significantly and consistently modulated across the groups. Analysis of miRNA expression revealed a number of differentially expressed miRNAs, including hsa-miR-140-3p (control compared with CAD, P=0.017), hsa-miR-182 (control compared with CAD, P=0.093), hsa-miR-92a and hsa-miR-92b (post- compared with pre-exercise, P<0.01). Global analysis of predicted miRNA targets found significantly reduced expression of genes with target regions compared with those without: hsa-miR-140-3p (P=0.002), hsa-miR-182 (P=0.001), hsa-miR-92a and hsa-miR-92b (P=2.2x10-16). In conclusion, using whole blood as a 'surrogate tissue' in patients with CAD, we have identified differentially expressed miRNAs, differentially regulated genes and modulated pathways which warrant further investigation in the setting of cardiovascular function. This approach may represent a novel non-invasive strategy to unravel potentially modifiable pathways and possible therapeutic targets in cardiovascular disease.
Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Perfilación de la Expresión Génica/métodos , Anciano , Estudios de Casos y Controles , Puente de Arteria Coronaria , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/cirugía , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Mitocondrias Cardíacas/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Fosforilación Oxidativa , Periodo Posoperatorio , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transducción de Señal/genéticaRESUMEN
Recent advances in genotyping technology and insights into disease mechanisms have increased interest in the genetics of cardiovascular disease. Several candidate genes involved in cardiovascular diseases were identified from studies using animal models, and the translation of these findings to human disease is an exciting challenge. There is a trend towards large-scale genome-wide association studies that are subject to strict quality criteria with regard to both genotyping and phenotyping. Here, we review some of the strategies that have been developed to translate findings from experimental models to human disease and outline the need for optimizing global approaches to analyze such results. Findings from ongoing studies are interpreted in the context of disease pathways instead of the more traditional focus on single genetic variants.
Asunto(s)
Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad/genética , Animales , Mapeo Cromosómico , Genotipo , Humanos , Modelos Biológicos , FenotipoRESUMEN
BACKGROUND: Combined congenic breeding and microarray gene expression profiling previously identified glutathione S-transferase µ-type 1 (Gstm1) as a positional and functional candidate gene for blood pressure (BP) regulation in the stroke-prone spontaneously hypertensive (SHRSP) rat. Renal Gstm1 expression in SHRSP rats is significantly reduced when compared with normotensive Wistar Kyoto (WKY) rats. As Gstm1 plays an important role in the secondary defence against oxidative stress, significantly lower expression levels may be functionally relevant in the development of hypertension. The aim of this study was to investigate the role of Gstm1 in BP regulation and oxidative stress by transgenic overexpression of the Gstm1 gene. METHOD: Two independent Gstm1 transgenic SHRSP lines were generated by microinjecting SHRSP embryos with a linear construct controlled by the EF-1α promoter encoding WKY Gstm1 cDNA [SHRSP-Tg(Gstm1)1 and SHRSP-Tg(Gstm1)2]. RESULTS: Transgenic rats exhibit significantly reduced BP and pulse pressure when compared with SHRSP [systolic: SHRSP 205.2â±â3.7âmmHg vs. SHRSP-Tg(Gstm1)1 175.5â±â1.6âmmHg and SHRSP-Tg(Gstm1)2 172â±â3.2âmmHg, Pâ<â0.001; pulse pressure: SHRSP 58.4â±â0.73âmmHg vs. SHRSP-Tg(Gstm1)1 52.7â±â0.19âmmHg and SHRSP-Tg(Gstm1)2 40.7â±â0.53âmmHg, Pâ<â0.001]. Total renal and aortic Gstm1 expression in transgenic animals was significantly increased compared with SHRSP [renal relative quantification (RQ): SHRSP-Tg(Gstm1)1 1.95 vs. SHRSP 1.0, Pâ<â0.01; aorta RQ: SHRSP-Tg(Gstm1)1 2.8 vs. SHRSP 1.0, Pâ<â0.05]. Renal lipid peroxidation (malondialdehyde: protein) and oxidizedâ:âreduced glutathione ratio levels were significantly reduced in both transgenic lines when compared with SHRSP [malondialdehyde: SHRSP 0.04â±â0.009âµmol/l vs. SHRSP-Tg(Gstm1)1 0.024â±â0.002âµmol/l and SHRSP-Tg(Gstm1)2 0.021â±â0.002âµmol/l; (oxidizedâ:âreduced glutathione ratio): SHRSP 5.19â±â2.26âµmol/l vs. SHRSP-Tg(Gstm1)1 0.17â±â0.11âµmol/l and SHRSP-Tg(Gstm1)2 0.47â±â0.22âµmol/l]. Transgenic SHRSP rats containing the WKY Gstm1 gene demonstrate significantly lower BP, reduced oxidative stress and improved levels of renal Gstm1 expression. CONCLUSION: These data support the hypothesis that reduced renal Gstm1 plays a role in the development of hypertension.