Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 188(5): 276, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27059035

RESUMEN

Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are relatively free of most contaminants and that contaminant concentrations are below levels (except potentially strontium) that would likely affect the survival of individuals and consequently regulate the species at the population level.


Asunto(s)
Huevos/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Contaminación Ambiental/estadística & datos numéricos , Alaska , Animales , Aves/fisiología , Charadriiformes , Ecosistema , Ambiente , Invertebrados
2.
Proc Biol Sci ; 276(1656): 447-57, 2009 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-18974033

RESUMEN

Mountain ranges, deserts, ice fields and oceans generally act as barriers to the movement of land-dependent animals, often profoundly shaping migration routes. We used satellite telemetry to track the southward flights of bar-tailed godwits (Limosa lapponica baueri), shorebirds whose breeding and non-breeding areas are separated by the vast central Pacific Ocean. Seven females with surgically implanted transmitters flew non-stop 8,117-11,680 km (10153+/-1043 s.d.) directly across the Pacific Ocean; two males with external transmitters flew non-stop along the same corridor for 7,008-7,390 km. Flight duration ranged from 6.0 to 9.4 days (7.8+/-1.3 s.d.) for birds with implants and 5.0 to 6.6 days for birds with externally attached transmitters. These extraordinary non-stop flights establish new extremes for avian flight performance, have profound implications for understanding the physiological capabilities of vertebrates and how birds navigate, and challenge current physiological paradigms on topics such as sleep, dehydration and phenotypic flexibility. Predicted changes in climatic systems may affect survival rates if weather conditions at their departure hub or along the migration corridor should change. We propose that this transoceanic route may function as an ecological corridor rather than a barrier, providing a wind-assisted passage relatively free of pathogens and predators.


Asunto(s)
Migración Animal/fisiología , Charadriiformes/fisiología , Ecosistema , Resistencia Física , Animales , Femenino , Vuelo Animal , Masculino , Océano Pacífico
3.
Science ; 364(6445)2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31196986

RESUMEN

Kubelka et al (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.


Asunto(s)
Cambio Climático , Comportamiento de Nidificación , Animales , Regiones Árticas , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA