Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35995564

RESUMEN

Deficits in auditory nerve (AN) function for older adults reduce afferent input to the cortex. The extent to which the cortex in older adults adapts to this loss of afferent input and the mechanisms underlying this adaptation are not well understood. We took a neural systems approach measuring AN and cortical evoked responses within 50 older and 27 younger human adults (59 female) to estimate central gain, or increased cortical activity despite reduced AN activity. Relative to younger adults, older adults' AN response amplitudes were smaller, but cortical responses were not. We used the relationship between AN and cortical response amplitudes in younger adults to predict cortical response amplitudes for older adults from their AN responses. Central gain in older adults was thus defined as the difference between their observed cortical responses and those predicted from the parameter estimates of younger adults. In older adults, decreased afferent input contributed to lower cortical GABA levels, greater central gain, and poorer speech recognition in noise (SIN). These effects on SIN occur in addition to, and independent from, effects attributed to elevated hearing thresholds. Our results are consistent with animal models of central gain and suggest that reduced AN afferent input in some older adults may result in changes in cortical encoding and inhibitory neurotransmission, which contribute to reduced SIN. An advancement in our understanding of the changes that occur throughout the auditory system in response to the gradual loss of input with increasing age may provide potential therapeutic targets for intervention.Significance:Age-related hearing loss is one of the most common chronic conditions of aging, yet little is known about how the cortex adapts to this loss of sensory input. We measured AN and cortical responses to the same stimulus in younger and older adults. In older adults we found hyperexcitability in cortical activity relative to concomitant declines in afferent input that are consistent with central gain Lower levels of cortical GABA, an inhibitory neurotransmitter was associated with greater central gain, which predicted poorer SIN. The results suggest that the cortex in older adults may adapt to attenuated sensory input by reducing inhibition to amplify the cortical response, but this amplification may lead to poorer SIN.

2.
J Neurosci ; 42(42): 8002-8018, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36180228

RESUMEN

Dysfunction of the peripheral auditory nerve (AN) contributes to dynamic changes throughout the central auditory system, resulting in abnormal auditory processing, including hypersensitivity. Altered sound sensitivity is frequently observed in autism spectrum disorder (ASD), suggesting that AN deficits and changes in auditory information processing may contribute to ASD-associated symptoms, including social communication deficits and hyperacusis. The MEF2C transcription factor is associated with risk for several neurodevelopmental disorders, and mutations or deletions of MEF2C produce a haploinsufficiency syndrome characterized by ASD, language, and cognitive deficits. A mouse model of this syndromic ASD (Mef2c-Het) recapitulates many of the MEF2C haploinsufficiency syndrome-linked behaviors, including communication deficits. We show here that Mef2c-Het mice of both sexes exhibit functional impairment of the peripheral AN and a modest reduction in hearing sensitivity. We find that MEF2C is expressed during development in multiple AN and cochlear cell types; and in Mef2c-Het mice, we observe multiple cellular and molecular alterations associated with the AN, including abnormal myelination, neuronal degeneration, neuronal mitochondria dysfunction, and increased macrophage activation and cochlear inflammation. These results reveal the importance of MEF2C function in inner ear development and function and the engagement of immune cells and other non-neuronal cells, which suggests that microglia/macrophages and other non-neuronal cells might contribute, directly or indirectly, to AN dysfunction and ASD-related phenotypes. Finally, our study establishes a comprehensive approach for characterizing AN function at the physiological, cellular, and molecular levels in mice, which can be applied to animal models with a wide range of human auditory processing impairments.SIGNIFICANCE STATEMENT This is the first report of peripheral auditory nerve (AN) impairment in a mouse model of human MEF2C haploinsufficiency syndrome that has well-characterized ASD-related behaviors, including communication deficits, hyperactivity, repetitive behavior, and social deficits. We identify multiple underlying cellular, subcellular, and molecular abnormalities that may contribute to peripheral AN impairment. Our findings also highlight the important roles of immune cells (e.g., cochlear macrophages) and other non-neuronal elements (e.g., glial cells and cells in the stria vascularis) in auditory impairment in ASD. The methodological significance of the study is the establishment of a comprehensive approach for evaluating peripheral AN function and impact of peripheral AN deficits with minimal hearing loss.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Masculino , Femenino , Ratones , Animales , Humanos , Trastorno Autístico/complicaciones , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/genética , Factores de Transcripción MEF2/genética , Nervio Coclear , Modelos Animales de Enfermedad
3.
J Neurosci ; 41(50): 10293-10304, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34753738

RESUMEN

A common complaint of older adults is difficulty understanding speech, particularly in challenging listening conditions. Accumulating evidence suggests that these difficulties may reflect a loss and/or dysfunction of auditory nerve (AN) fibers. We used a novel approach to study age-related changes in AN structure and several measures of AN function, including neural synchrony, in 58 older adults and 42 younger adults. AN activity was measured in response to an auditory click (compound action potential; CAP), presented at stimulus levels ranging from 70 to 110 dB pSPL. Poorer AN function was observed for older than younger adults across CAP measures at higher but not lower stimulus levels. Associations across metrics and stimulus levels were consistent with age-related AN disengagement and AN dyssynchrony. High-resolution T2-weighted structural imaging revealed age-related differences in the density of cranial nerve VIII, with lower density in older adults with poorer neural synchrony. Individual differences in neural synchrony were the strongest predictor of speech recognition, such that poorer synchrony predicted poorer recognition of time-compressed speech and poorer speech recognition in noise for both younger and older adults. These results have broad clinical implications and are consistent with an interpretation that age-related atrophy at the level of the AN contributes to poorer neural synchrony and may explain some of the perceptual difficulties of older adults.SIGNIFICANCE STATEMENT Differences in auditory nerve (AN) pathophysiology may contribute to the large variations in hearing and communication abilities of older adults. However, current diagnostics focus largely on the increase in detection thresholds, which is likely because of the absence of indirect measures of AN function in standard clinical test batteries. Using novel metrics of AN function, combined with estimates of AN structure and auditory function, we identified age-related differences across measures that we interpret to represent age-related reductions in AN engagement and poorer neural synchrony. Structure-function associations are consistent with an explanation of AN deficits that arise from age-related atrophy of the AN. Associations between neural synchrony and speech recognition suggest that individual and age-related deficits in neural synchrony contribute to speech recognition deficits.


Asunto(s)
Nervio Coclear/fisiopatología , Presbiacusia/fisiopatología , Factores de Edad , Anciano , Anciano de 80 o más Años , Audiometría , Umbral Auditivo/fisiología , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
4.
Glia ; 70(4): 768-791, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34964523

RESUMEN

The auditory nerve (AN) of the inner ear is the primary conveyor of acoustic information from sensory hair cells to the brainstem. Approximately 95% of peripheral AN fibers are myelinated by glial cells. The integrity of myelin and the glial-associated paranodal structures at the node of Ranvier is critical for normal AN activity and axonal survival and function in the central auditory nervous system. However, little is known about the node of Ranvier's spatiotemporal development in the AN, how the aging process (or injury) affects the activity of myelinating glial cells, and how downstream alterations in myelin and paranodal structure contribute to AN degeneration and sensorineural hearing loss. Here, we characterized two types of Ranvier nodes-the axonal node and the ganglion node-in the mouse peripheral AN, and found that they are distinct in several features of postnatal myelination and age-related degeneration. Cellular, molecular, and structure-function correlations revealed that the two node types are each critical for different aspects of peripheral AN function. Neural processing speed and synchrony is associated with the length of the axonal node, while stimulus level-dependent amplitude growth and action potentials are associated with the ganglion node. Moreover, our data indicate that dysregulation of glial cells (e.g., satellite cells) and degeneration of the ganglion node structure are an important new mechanism of age-related hearing loss.


Asunto(s)
Vaina de Mielina , Nódulos de Ranvier , Animales , Axones/fisiología , Cóclea , Nervio Coclear , Ratones , Vaina de Mielina/fisiología
5.
Eur J Neurosci ; 56(12): 6115-6140, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36227258

RESUMEN

There is great interest in developing non-invasive approaches for studying cortical plasticity in humans. High-frequency presentation of auditory and visual stimuli, or sensory tetanisation, can induce long-term-potentiation-like (LTP-like) changes in cortical activity. However, contrasting effects across studies suggest that sensory tetanisation may be unreliable. We review these contrasting effects, conduct our own study of auditory and visual tetanisation, and perform meta-analyses to determine the average effect of sensory tetanisation across studies. We measured auditory-evoked amplitude changes in a group of younger (18-29 years of age) and older (55-83 years of age) adults following tetanisation to 1 and 4 kHz tone bursts and following a slow-presentation control. We also measured visual-evoked amplitude changes following tetanisation to horizontal and vertical sign gradients. Auditory and visual response amplitudes decreased following tetanisation, consistent with some studies but contrasting with others finding amplitude increases (i.e. LTP-like changes). Older adults exhibited more modest auditory-evoked amplitude decreases, but visual-evoked amplitude decreases like those of younger adults. Changes in response amplitude were not specific to tetanised stimuli. Importantly, slow presentation of auditory tone bursts produced response amplitude changes approximating those observed following tetanisation in younger adults. Meta-analyses of visual and auditory tetanisation studies found that the overall effect of sensory tetanisation was not significant across studies or study sites. The results suggest that sensory tetanisation may not produce reliable changes in cortical responses and more work is needed to determine the validity of sensory tetanisation as a method for inducing human cortical plasticity in vivo.


Asunto(s)
Potenciación a Largo Plazo , Plasticidad Neuronal , Humanos , Anciano , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología
6.
Neuroimage ; 215: 116792, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32278895

RESUMEN

Declining auditory spatial processing is hypothesized to contribute to the difficulty older adults have detecting, locating, and selecting a talker from among others in noisy listening environments. Though auditory spatial processing has been associated with several cortical structures, little is known regarding the underlying white matter architecture or how age-related changes in white matter microstructure may affect it. The arcuate fasciculus is a target for understanding age-related differences in auditory spatial attention based on normative spatial attention findings in humans. Similarly, animal and human clinical studies suggest that the corpus callosum plays a role in the cross-hemispheric integration of auditory spatial information important for spatial localization and attention. The current investigation used diffusion imaging to examine the extent to which age-group differences in the identification of spatially cued speech were accounted for by individual differences in the white matter microstructure of the right arcuate fasciculus and the corpus callosum. Higher right arcuate and callosal fractional anisotropy (FA) predicted better segregation and identification of spatially cued speech across younger and older listeners. Further, individual differences in callosal microstructure mediated age-group differences in auditory spatial processing. Follow-up analyses suggested that callosal tracts connecting left and right pre-frontal and posterior parietal cortex are particularly important for auditory spatial processing. The results are consistent with previous work in animals and clinical human samples and provide a cortical mechanism to account for age-related deficits in auditory spatial processing. Further, the results suggest that both intrahemispheric and interhemispheric mechanisms are involved in auditory spatial processing.


Asunto(s)
Envejecimiento/fisiología , Percepción Auditiva/fisiología , Encéfalo/anatomía & histología , Encéfalo/fisiología , Procesamiento Espacial/fisiología , Sustancia Blanca/anatomía & histología , Sustancia Blanca/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Audiometría , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Percepción del Habla/fisiología , Adulto Joven
7.
J Neurophysiol ; 122(4): 1685-1696, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31365323

RESUMEN

Temporal modulations are an important part of speech signals. An accurate perception of these time-varying qualities of sound is necessary for successful communication. The current study investigates the relationship between sustained envelope encoding and speech-in-noise perception in a cohort of normal-hearing younger (ages 18-30 yr, n = 22) and older adults (ages 55-90+ yr, n = 35) using the subcortical auditory steady-state response (ASSR). ASSRs were measured in response to the envelope of 400-ms amplitude-modulated (AM) tones with 3,000-Hz carrier frequencies and 80-Hz modulation frequencies. AM tones had modulation depths of 0, -4, and -8 dB relative to m = 1 (m = 1, 0.631, and 0.398, respectively). The robustness, strength at modulation frequency, and synchrony of subcortical envelope encoding were quantified via time-domain correlations, spectral amplitude, and phase-locking value, respectively. Speech-in-noise ability was quantified via the QuickSIN test in the 0- and 5-dB signal-to-noise (SNR) conditions. All ASSR metrics increased with increasing modulation depth and there were no effects of age group. ASSR metrics in response to shallow modulation depths predicted 0-dB speech scores. Results demonstrate that sustained amplitude envelope processing in the brainstem relates to speech-in-noise abilities, but primarily in difficult listening conditions at low SNRs. These findings furthermore highlight the utility of shallow modulation depths for studying temporal processing. The absence of age effects in these data demonstrate that individual differences in the robustness, strength, and specificity of subcortical envelope processing, and not age, predict speech-in-noise performance in the most difficult listening conditions.NEW & NOTEWORTHY Failure to correctly understand speech in the presence of background noise is a significant problem for many normal-hearing adults and may impede healthy communication. The relationship between sustained envelope encoding in the brainstem and speech-in-noise perception remains to be clarified. The present study demonstrates that the strength, specificity, and robustness of the brainstem's representations of sustained stimulus periodicity relates to speech-in-noise perception in older and younger normal-hearing adults, but only in highly challenging listening environments.


Asunto(s)
Envejecimiento/fisiología , Tronco Encefálico/fisiología , Percepción del Habla , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Tronco Encefálico/crecimiento & desarrollo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ruido , Periodicidad , Relación Señal-Ruido
8.
J Neurophysiol ; 119(3): 1019-1028, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29187555

RESUMEN

Declines in auditory nerve (AN) function contribute to suprathreshold auditory processing and communication deficits in individuals with normal hearing, hearing loss, hyperacusis, and tinnitus. Procedures to characterize AN loss or dysfunction in humans are limited. We report several novel complementary metrics using the compound action potential (CAP), a direct measure of summated AN activity. Together, these metrics may be used to characterize AN function noninvasively in humans. We examined how these metrics change with stimulus intensity and interpreted these changes within a framework of known physiological properties of the basilar membrane and AN. Our results reveal how neural synchrony and the recruitment of AN fibers with longer first-spike latencies likely contribute to the CAP, affect auditory processing, and differ with noise exposure history in younger adults with normal pure-tone thresholds. Moving forward, this new battery of metrics provides a crucial step toward new diagnostics of AN function in humans. NEW & NOTEWORTHY Loss or inactivity of auditory nerve (AN) fibers is thought to contribute to suprathreshold auditory processing deficits, but evidence-based methods to assess these effects are not available. We describe several novel metrics that together may be used to quantify neural synchrony and characterize AN function in humans.


Asunto(s)
Potenciales de Acción , Nervio Coclear/fisiología , Estimulación Acústica , Adulto , Umbral Auditivo , Femenino , Humanos , Masculino , Modelos Neurológicos , Reflejo Acústico , Adulto Joven
9.
Environ Res ; 153: 55-62, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27898310

RESUMEN

Most households and workplaces all over the world possess furnishings and electronics, all of which contain potentially toxic flame retardant chemicals to prevent fire hazards. Indoor dust is a recognized repository of these types of chemicals including polybrominated diphenyl ethers (PBDEs) and non-polybrominated diphenyl ethers (non-PBDEs). However, no previous U.S. studies have differentiated concentrations from elevated surface dust (ESD) and floor dust (FD) within and across microenvironments. We address this information gap by measuring twenty-two flame-retardant chemicals in dust on elevated surfaces (ESD; n=10) and floors (FD; n=10) from rooms on a California campus that contain various concentrations of electronic products. We hypothesized a difference in chemical concentrations in ESD and FD. Secondarily, we examined whether or not this difference persisted: (a) across the studied microenvironments and (b) in rooms with various concentrations of electronics. A Wilcoxon signed-rank test demonstrated that the ESD was statistically significantly higher than FD for BDE-47 (p=0.01), BDE-99 (p=0.01), BDE-100 (p=0.01), BDE-153 (p=0.02), BDE-154 (p=0.02), and 3 non-PBDEs including EH-TBB (p=0.02), BEH-TEBP (p=0.05), and TDCIPP (p=0.03). These results suggest different levels and kinds of exposures to flame-retardant chemicals for individuals spending time in the sampled locations depending on the position of accumulated dust. Therefore, further research is needed to estimate human exposure to flame retardant chemicals based on how much time and where in the room individuals spend their time. Such sub-location estimates will likely differ from assessments that assume continuous unidimensional exposure, with implications for improved understanding of potential health impacts of flame retardant chemicals.


Asunto(s)
Contaminación del Aire Interior/análisis , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Retardadores de Llama/análisis , California , Electrónica , Monitoreo del Ambiente/métodos , Éteres Difenilos Halogenados/análisis , Vivienda , Humanos , Laboratorios , Universidades
10.
Hear Res ; 442: 108945, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154191

RESUMEN

Temporal modulations are ubiquitous features of sound signals that are important for auditory perception. The perception of temporal modulations, or temporal processing, is known to decline with aging and hearing loss and negatively impact auditory perception in general and speech recognition specifically. However, neurophysiological literature also provides evidence of exaggerated or enhanced encoding of specifically temporal envelopes in aging and hearing loss, which may arise from changes in inhibitory neurotransmission and neuronal hyperactivity. This review paper describes the physiological changes to the neural encoding of temporal envelopes that have been shown to occur with age and hearing loss and discusses the role of disinhibition and neural hyperactivity in contributing to these changes. Studies in both humans and animal models suggest that aging and hearing loss are associated with stronger neural representations of both periodic amplitude modulation envelopes and of naturalistic speech envelopes, but primarily for low-frequency modulations (<80 Hz). Although the frequency dependence of these results is generally taken as evidence of amplified envelope encoding at the cortex and impoverished encoding at the midbrain and brainstem, there is additional evidence to suggest that exaggerated envelope encoding may also occur subcortically, though only for envelopes with low modulation rates. A better understanding of how temporal envelope encoding is altered in aging and hearing loss, and the contexts in which neural responses are exaggerated/diminished, may aid in the development of interventions, assistive devices, and treatment strategies that work to ameliorate age- and hearing-loss-related auditory perceptual deficits.


Asunto(s)
Sordera , Pérdida Auditiva , Percepción del Habla , Animales , Humanos , Percepción del Habla/fisiología , Percepción Auditiva/fisiología , Envejecimiento/fisiología , Estimulación Acústica/métodos
11.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38585917

RESUMEN

Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r=-0.407), but noise-exposure effects are weak (r=-0.152). We conclude that noise-exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.

12.
Hear Res ; 447: 109010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744019

RESUMEN

Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r = -0.407), but noise exposure effects are weak (r = -0.152). We conclude that noise exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.


Asunto(s)
Estimulación Acústica , Nervio Coclear , Ruido , Humanos , Ruido/efectos adversos , Anciano , Nervio Coclear/fisiopatología , Persona de Mediana Edad , Adulto , Anciano de 80 o más Años , Factores de Edad , Adulto Joven , Adolescente , Envejecimiento/fisiología , Potenciales Evocados Auditivos , Pérdida Auditiva Provocada por Ruido/fisiopatología , Femenino , Masculino , Animales , Potenciales de Acción
13.
J Assoc Res Otolaryngol ; 23(2): 273-284, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35020090

RESUMEN

Auditory function declines with age, as evidenced by communication difficulties in challenging listening environments for older adults. Declining auditory function may arise, in part, from an age-related loss and/or inactivity of low-spontaneous-rate (SR) auditory nerve (AN) fibers, a subgroup of neurons important for suprathreshold processing. Compared to high-SR fibers, low-SR fibers take longer to recover from prior stimulation. Taking advantage of this difference, the forward-masked recovery function paradigm estimates the relative proportions of low- and high-SR fibers in the AN by quantifying the time needed for AN responses to recover from prior stimulation (ΔTrecovery). Due to the slower recovery of low-SR fibers, ANs that need more time to fully recover (longer ΔTrecovery) are estimated to have a larger proportion of low-SR fibers than ANs that need less time (shorter ΔTrecovery). To test the hypothesis that low-SR fiber activity is reduced in older humans, the current study assessed recovery functions in 32 older and 16 younger adults using the compound action potential. Results show that ΔTrecovery is shorter for older adults than for younger adults, consistent with a theorized age-related loss and/or inactivity of low-SR fibers. ΔTrecovery did not differ between individuals with and without a prior history of noise exposure as assessed by self-report. This study is the first to successfully assess forward-masked recovery functions in both younger and older adults and provides important insights into the structural and functional changes occurring in the AN with increasing age.


Asunto(s)
Percepción Auditiva , Fibras Nerviosas , Estimulación Acústica , Potenciales de Acción , Anciano , Umbral Auditivo/fisiología , Nervio Coclear/fisiología , Audición , Humanos , Fibras Nerviosas/fisiología
14.
Brain Struct Funct ; 227(1): 203-218, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34632538

RESUMEN

Older adults with hearing loss experience significant difficulties understanding speech in noise, perhaps due in part to limited benefit from supporting executive functions that enable the use of environmental cues signaling changes in listening conditions. Here we examined the degree to which 41 older adults (60.56-86.25 years) exhibited cortical responses to informative listening difficulty cues that communicated the listening difficulty for each trial compared to neutral cues that were uninformative of listening difficulty. Word recognition was significantly higher for informative compared to uninformative cues in a + 10 dB signal-to-noise ratio (SNR) condition, and response latencies were significantly shorter for informative cues in the + 10 dB SNR and the more-challenging + 2 dB SNR conditions. Informative cues were associated with elevated blood oxygenation level-dependent contrast in visual and parietal cortex. A cue-SNR interaction effect was observed in the cingulo-opercular (CO) network, such that activity only differed between SNR conditions when an informative cue was presented. That is, participants used the informative cues to prepare for changes in listening difficulty from one trial to the next. This cue-SNR interaction effect was driven by older adults with more low-frequency hearing loss and was not observed for those with more high-frequency hearing loss, poorer set-shifting task performance, and lower frontal operculum gray matter volume. These results suggest that proactive strategies for engaging CO adaptive control may be important for older adults with high-frequency hearing loss to optimize speech recognition in changing and challenging listening conditions.


Asunto(s)
Pérdida Auditiva , Percepción del Habla , Anciano , Anciano de 80 o más Años , Cognición , Señales (Psicología) , Sordera , Pérdida Auditiva de Alta Frecuencia , Humanos , Persona de Mediana Edad , Habla
15.
Neurobiol Aging ; 115: 50-59, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35468552

RESUMEN

Aging is associated with auditory nerve (AN) functional deficits and decreased inhibition in the central auditory system, amplifying central responses in a process referred to here as central gain. Although central gain increases response amplitudes, central gain may not restore disrupted response timing. In this translational study, we measured responses putatively generated by the AN and auditory midbrain in younger and older mice and humans. We hypothesized that older mice and humans exhibit increased central gain without an improvement in inter-trial synchrony in the midbrain. Our data demonstrated greater age-related deficits in AN response amplitudes than auditory midbrain response amplitudes, as shown by significant interactions between inferred neural generator and age group, indicating increased central gain in auditory midbrain. However, synchrony decreases with age in both the AN and midbrain responses. These results reveal age-related increases in central gain without concomitant improvements in synchrony, consistent with those predictions based on decreases in inhibition. Persistent decreases in synchrony may contribute to auditory processing deficits in older mice and humans.


Asunto(s)
Nervio Coclear , Potenciales Evocados Auditivos del Tronco Encefálico , Estimulación Acústica , Envejecimiento/fisiología , Percepción Auditiva/fisiología , Tronco Encefálico , Nervio Coclear/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Humanos
16.
BMC Dev Biol ; 11: 37, 2011 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-21668976

RESUMEN

BACKGROUND: Sphingosine-1-phosophate (S1P) is a biologically active sphingolipid metabolite that influences cellular events including differentiation, proliferation, and migration. S1P acts through five distinct cell surface receptors designated S1P1-5R, with S1P1R having the highest expression level in the developing heart. S1P1R is critical for vascular maturation, with its loss leading to embryonic death by E14.5; however, its function during early cardiac development is not well known. Our previous studies demonstrated that altered S1P levels adversely affects atrioventricular (AV) canal development in vitro, with reduced levels leading to cell death and elevated levels inhibiting cell migration and endothelial to mesenchymal cell transformation (EMT). RESULTS: We determined, by real-time PCR analysis, that S1P1R was expressed at least 10-fold higher than other S1P receptors in the developing heart. Immunohistochemical analysis revealed S1P1R protein expression in both endothelial and myocardial cells in the developing atrium and ventricle. Using AV canal cultures, we observed that treatment with either FTY720 (an S1P1,3,4,5R agonist) or KRP203 (an S1P1R-specific agonist) caused similar effects on AV canal cultures as S1P treatment, including induction of cell rounding, inhibition of cell migration, and inhibition of EMT. In vivo, morphological analysis of embryonic hearts at E10.5 revealed that S1P1R-/- hearts were malformed with reduced myocardial tissue. In addition to reduced myocardial tissue, E12.5 S1P1R-/- hearts had disrupted morphology of the heart wall and trabeculae, with thickened and disorganized outer compact layer and reduced fibronectin (FN) deposition compared to S1P1R+/+ littermates. The reduced myocardium was accompanied by a decrease in cell proliferation but not an increase in apoptosis. CONCLUSIONS: These data indicate that S1P1R is the primary mediator of S1P action in AV canal cultures and that loss of S1P1R expression in vivo leads to malformed embryonic hearts, in part due to reduced fibronectin expression and reduced cell proliferation.


Asunto(s)
Corazón/embriología , Lisofosfolípidos/metabolismo , Miocardio/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Proliferación Celular , Embrión de Mamíferos/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Fibronectinas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Esfingosina/metabolismo
17.
Psychol Aging ; 36(4): 520-530, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34124922

RESUMEN

Multisensory input can improve perception of ambiguous unisensory information. For example, speech heard in noise can be more accurately identified when listeners see a speaker's articulating face. Importantly, these multisensory effects can be superadditive to listeners' ability to process unisensory speech, such that audiovisual speech identification is better than the sum of auditory-only and visual-only speech identification. Age-related declines in auditory and visual speech perception have been hypothesized to be concomitant with stronger cross-sensory influences on audiovisual speech identification, but little evidence exists to support this. Currently, studies do not account for the multisensory superadditive benefit of auditory-visual input in their metrics of the auditory or visual influence on audiovisual speech perception. Here we treat multisensory superadditivity as independent from unisensory auditory and visual processing. In the current investigation, older and younger adults identified auditory, visual, and audiovisual speech in noisy listening conditions. Performance across these conditions was used to compute conventional metrics of the auditory and visual influence on audiovisual speech identification and a metric of auditory-visual superadditivity. Consistent with past work, auditory and visual speech identification declined with age, audiovisual speech identification was preserved, and no age-related differences in the auditory or visual influence on audiovisual speech identification were observed. However, we found that auditory-visual superadditivity improved with age. The novel findings suggest that multisensory superadditivity is independent of unisensory processing. As auditory and visual speech identification decline with age, compensatory changes in multisensory superadditivity may preserve audiovisual speech identification in older adults. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Asunto(s)
Percepción Auditiva/fisiología , Inteligibilidad del Habla/fisiología , Percepción Visual/fisiología , Adulto , Anciano , Envejecimiento , Femenino , Humanos , Masculino , Persona de Mediana Edad , Percepción del Habla , Adulto Joven
18.
Neuropsychologia ; 161: 108012, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34474065

RESUMEN

Individuals typically exhibit better cross-sensory perception following unisensory loss, demonstrating improved perception of information available from the remaining senses and increased cross-sensory use of neural resources. Even individuals with no sensory loss will exhibit such changes in cross-sensory processing following temporary sensory deprivation, suggesting that the brain's capacity for recruiting cross-sensory sources to compensate for degraded unisensory input is a general characteristic of the perceptual process. Many studies have investigated how auditory and visual neural structures respond to within- and cross-sensory input. However, little attention has been given to how general auditory and visual neural processing relates to within and cross-sensory perception. The current investigation examines the extent to which individual differences in general auditory neural processing accounts for variability in auditory, visual, and audiovisual speech perception in a sample of young healthy adults. Auditory neural processing was assessed using a simple click stimulus. We found that individuals with a smaller P1 peak amplitude in their auditory-evoked potential (AEP) had more difficulty identifying speech sounds in difficult listening conditions, but were better lipreaders. The results suggest that individual differences in the auditory neural processing of healthy adults can account for variability in the perception of information available from the auditory and visual modalities, similar to the cross-sensory perceptual compensation observed in individuals with sensory loss.


Asunto(s)
Lectura de los Labios , Percepción del Habla , Estimulación Acústica , Adulto , Percepción Auditiva , Humanos , Ruido , Habla , Percepción Visual
19.
J Neurosci Methods ; 346: 108937, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910925

RESUMEN

BACKGROUND: The auditory brainstem response (ABR), specifically wave I, is widely used to noninvasively measure auditory nerve (AN) function. Recent work in humans has introduced novel electrocochleographic measures to comprehensively characterize AN function that emphasize suprathreshold processing and estimate neural synchrony. NEW METHOD: This study establishes new tools for evaluating AN function in vivo in adult mice using tone-evoked ABRs obtained from young-adult CBA/CaJ mice, adapting the approach previously introduced in humans. Six metrics are obtained from ABR wave I at suprathreshold stimulus levels. RESULTS: Change-point analyses show that the metrics' rate of change with stimulus level differs between moderate and high suprathreshold levels, suggesting that this approach can potentially characterize the presence of heterogeneous AN fiber types. COMPARISON WITH EXISTING METHODS: Traditional ABR approaches focus on response thresholds and averaged amplitudes/latencies. In contrast, our multi-metric approach, which uses single-trial data and suprathreshold stimuli, provides novel information and identifies evidence of neural synchrony deficits and changes in the heterogeneity of AN fibers underlying AN behavior. CONCLUSION: The techniques reported here provide a novel tool to assess changes in AN function in vivo in a commonly used animal model. A benchmark of most current hearing research is the transition from animal to human studies. Here we established a translational objective approach, applying methods that were first developed in humans to animals. This approach enables researchers to identify changes in AN function arising from the animal models with well-characterized pathology, and predict similar pathological changes in human AN dysfunction and hearing loss.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico , Ruido , Estimulación Acústica , Animales , Umbral Auditivo , Nervio Coclear , Ratones , Ratones Endogámicos CBA
20.
J Assoc Res Otolaryngol ; 20(1): 73-88, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30456729

RESUMEN

Older adults typically have difficulty identifying speech that is temporally distorted, such as reverberant, accented, time-compressed, or interrupted speech. These difficulties occur even when hearing thresholds fall within a normal range. Auditory neural processing speed, which we have previously found to predict auditory temporal processing (auditory gap detection), may interfere with the ability to recognize phonetic features as they rapidly unfold over time in spoken speech. Further, declines in perceptuomotor processing speed and executive functioning may interfere with the ability to track, access, and process information. The current investigation examined the extent to which age-related differences in time-compressed speech identification were predicted by auditory neural processing speed, perceptuomotor processing speed, and executive functioning. Groups of normal-hearing (up to 3000 Hz) younger and older adults identified 40, 50, and 60 % time-compressed sentences. Auditory neural processing speed was defined as the P1 and N1 latencies of click-induced auditory-evoked potentials. Perceptuomotor processing speed and executive functioning were measured behaviorally using the Connections Test. Compared to younger adults, older adults exhibited poorer time-compressed speech identification and slower perceptuomotor processing. Executive functioning, P1 latency, and N1 latency did not differ between age groups. Time-compressed speech identification was independently predicted by P1 latency, perceptuomotor processing speed, and executive functioning in younger and older listeners. Results of model testing suggested that declines in perceptuomotor processing speed mediated age-group differences in time-compressed speech identification. The current investigation joins a growing body of literature suggesting that the processing of temporally distorted speech is impacted by lower-level auditory neural processing and higher-level perceptuomotor and executive processes.


Asunto(s)
Percepción Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Función Ejecutiva/fisiología , Percepción del Habla/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tiempo de Reacción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA