Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 615(7954): 813-816, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36991189

RESUMEN

The proton is one of the main building blocks of all visible matter in the Universe1. Among its intrinsic properties are its electric charge, mass and spin2. These properties emerge from the complex dynamics of its fundamental constituents-quarks and gluons-described by the theory of quantum chromodynamics3-5. The electric charge and spin of protons, which are shared among the quarks, have been investigated previously using electron scattering2. An example is the highly precise measurement of the electric charge radius of the proton6. By contrast, little is known about the inner mass density of the proton, which is dominated by the energy carried by gluons. Gluons are hard to access using electron scattering because they do not carry an electromagnetic charge. Here we investigated the gravitational density of gluons using a small colour dipole, through the threshold photoproduction of the J/ψ particle. We determined the gluonic gravitational form factors of the proton7,8 from our measurement. We used a variety of models9-11 and determined, in all cases, a mass radius that is notably smaller than the electric charge radius. In some, but not all cases, depending on the model, the determined radius agrees well with first-principle predictions from lattice quantum chromodynamics12. This work paves the way for a deeper understanding of the salient role of gluons in providing gravitational mass to visible matter.

2.
Nature ; 590(7847): 561-565, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627814

RESUMEN

The fundamental building blocks of the proton-quarks and gluons-have been known for decades. However, we still have an incomplete theoretical and experimental understanding of how these particles and their dynamics give rise to the quantum bound state of the proton and its physical properties, such as its spin1. The two up quarks and the single down quark that comprise the proton in the simplest picture account only for a few per cent of the proton mass, the bulk of which is in the form of quark kinetic and potential energy and gluon energy from the strong force2. An essential feature of this force, as described by quantum chromodynamics, is its ability to create matter-antimatter quark pairs inside the proton that exist only for a very short time. Their fleeting existence makes the antimatter quarks within protons difficult to study, but their existence is discernible in reactions in which a matter-antimatter quark pair annihilates. In this picture of quark-antiquark creation by the strong force, the probability distributions as a function of momentum for the presence of up and down antimatter quarks should be nearly identical, given that their masses are very similar and small compared to the mass of the proton3. Here we provide evidence from muon pair production measurements that these distributions are considerably different, with more abundant down antimatter quarks than up antimatter quarks over a wide range of momenta. These results are expected to revive interest in several proposed mechanisms for the origin of this antimatter asymmetry in the proton that had been disfavoured by previous results4, and point to future measurements that can distinguish between these mechanisms.

4.
Dermatol Surg ; 24(9): 957-63, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9754083

RESUMEN

Previous attempts at classifying small graft transplants have focused mainly upon graft size and have not taken into consideration other technical factors involved in graft production that may influence the outcome of the surgery. The proposed classification attempts to consider these factors by including various technical aspects of harvesting, dissection, and placement, all of which impact the quality and quantity of the small grafts used in the procedure. By standardizing the nomenclature, as well as the description of the other factors involved in the surgery, communication between physicians and patients may be facilitated. In addition, different procedures may be more accurately studied and compared.


Asunto(s)
Alopecia/cirugía , Folículo Piloso/trasplante , Microcirugia/clasificación , Dermatología , Humanos , Sociedades Médicas , Terminología como Asunto , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA