Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
COPD ; 20(1): 307-320, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37737132

RESUMEN

Pulmonary imaging measurements using magnetic resonance imaging (MRI) and computed tomography (CT) have the potential to deepen our understanding of chronic obstructive pulmonary disease (COPD) by measuring airway and parenchymal pathologic information that cannot be provided by spirometry. Currently, MRI and CT measurements are not included in mortality risk predictions, diagnosis, or COPD staging. We evaluated baseline pulmonary function, MRI and CT measurements alongside imaging texture-features to predict 10-year all-cause mortality in ex-smokers with (n = 93; 31 females; 70 ± 9years) and without (n = 69; 29 females, 69 ± 9years) COPD. CT airway and vessel measurements, helium-3 (3He) MRI ventilation defect percent (VDP) and apparent diffusion coefficients (ADC) were quantified. MRI and CT texture-features were extracted using PyRadiomics (version2.2.0). Associations between 10-year all-cause mortality and all clinical and imaging measurements were evaluated using multivariable regression model odds-ratios. Machine-learning predictive models for 10-year all-cause mortality were evaluated using area-under-receiver-operator-characteristic-curve (AUC), sensitivity and specificity analyses. DLCO (%pred) (HR = 0.955, 95%CI: 0.934-0.976, p < 0.001), MRI ADC (HR = 1.843, 95%CI: 1.260-2.871, p < 0.001), and CT informational-measure-of-correlation (HR = 3.546, 95% CI: 1.660-7.573, p = 0.001) were the strongest predictors of 10-year mortality. A machine-learning model trained on clinical, imaging, and imaging textures was the best predictive model (AUC = 0.82, sensitivity = 83%, specificity = 84%) and outperformed the solely clinical model (AUC = 0.76, sensitivity = 77%, specificity = 79%). In ex-smokers, regardless of COPD status, addition of CT and MR imaging texture measurements to clinical models provided unique prognostic information of mortality risk that can allow for better clinical management.Clinical Trial Registration: www.clinicaltrials.gov NCT02279329.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Femenino , Masculino , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Imagen por Resonancia Magnética , Tórax
2.
COPD ; 20(1): 186-196, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37395048

RESUMEN

Computed tomography (CT) total-airway-count (TAC) and airway wall-thickness differ across chronic obstructive pulmonary disease (COPD) severities, but longitudinal insights are lacking. The aim of this study was to evaluate longitudinal CT airway measurements over three-years in ex-smokers. In this prospective convenience sample study, ex-smokers with (n = 50; 13 female; age = 70 ± 9 years; pack-years = 43 ± 26) and without (n = 40; 17 female; age = 69 ± 10 years; pack-years = 31 ± 17) COPD completed CT, 3He magnetic resonance imaging (MRI), and pulmonary function tests at baseline and three-year follow-up. CT TAC, airway wall-area (WA), lumen-area (LA), and wall-area percent (WA%) were generated. Emphysema was quantified as the relative-area-of-the-lung with attenuation < -950 Hounsfield-units (RA950). MRI ventilation-defect-percent (VDP) was also quantified. Differences over time were evaluated using paired-samples t tests. Multivariable prediction models using the backwards approach were generated. After three-years, forced-expiratory-volume in 1-second (FEV1) was not different in ex-smokers with (p = 0.4) and without (p = 0.5) COPD, whereas RA950 was (p < 0.001, p = 0.02, respectively). In ex-smokers without COPD, there was no change in TAC (p = 0.2); however, LA (p = 0.009) and WA% (p = 0.01) were significantly different. In ex-smokers with COPD, TAC (p < 0.001), WA (p = 0.04), LA (p < 0.001), and WA% (p < 0.001) were significantly different. In all ex-smokers, TAC was related to VDP (baseline: ρ = -0.30, p = 0.005; follow-up: ρ = -0.33, p = 0.002). In significant multivariable models, baseline airway wall-thickness was predictive of TAC worsening. After three-years, in the absence of FEV1 worsening, TAC diminished only in ex-smokers with COPD and airway walls were thinner in all ex-smokers. These longitudinal findings suggest that the evaluation of CT airway remodeling may be a useful clinical tool for predicting disease progression and managing COPD.Clinical trial registration: www.clinicaltrials.gov NCT02279329.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Anciano , Femenino , Humanos , Persona de Mediana Edad , Ex-Fumadores , Pulmón/diagnóstico por imagen , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico por imagen
3.
J Magn Reson Imaging ; 56(5): 1475-1486, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35278011

RESUMEN

BACKGROUND: Outside eosinophilia, current clinical asthma phenotypes do not show strong relationships with disease pathogenesis or treatment responses. While chest x-ray computed tomography (CT) phenotypes have previously been explored, functional MRI measurements provide complementary phenotypic information. PURPOSE: To derive novel data-driven asthma phenotypic clusters using functional MRI airway biomarkers that better describe airway pathologies in patients. STUDY TYPE: Retrospective. POPULATION: A total of 45 patients with asthma who underwent post-bronchodilator 129 Xe MRI, volume-matched CT, spirometry and plethysmography within a 90-minute visit. FIELD STRENGTH/SEQUENCE: Three-dimensional gradient-recalled echo 129 Xe ventilation sequence at 3 T. ASSESSMENT: We measured MRI ventilation defect percent (VDP), CT airway wall-area percent (WA%), wall-thickness (WT, WT* [*normalized for age/sex/height]), lumen-area (LA), lumen-diameter (D, D*) and total airway count (TAC). Univariate relationships were utilized to select variables for k-means cluster analysis and phenotypic subgroup generation. Spirometry and plethysmography measurements were compared across imaging-based clusters. STATISTICAL TESTS: Spearman correlation (ρ), one-way analysis of variance (ANOVA) or Kruskal-Wallis tests with post hoc Bonferroni correction for multiple comparisons, significance level 0.05. RESULTS: Based on limited common variance (Kaiser-Meyer-Olkin-measure = 0.44), four unique clusters were generated using MRI VDP, TAC, WT* and D* (52 ± 14 years, 27 female). Imaging measurements were significantly different across clusters as was the forced expiratory volume in 1-second (FEV1 %pred ), residual volume/total lung capacity and airways resistance. Asthma-control (P = 0.9), quality-of-life scores (P = 0.7) and the proportions of severe-asthma (P = 0.4) were not significantly different. Cluster1 (n = 15/8 female) reflected mildly abnormal CT airway measurements and FEV1 with moderately abnormal VDP. Cluster2 (n = 12/12 female) reflected moderately abnormal TAC, WT and FEV1 . In Cluster3 and Cluster4 (n = 14/6 female, n = 4/1 female, respectively), there was severely reduced TAC, D and FEV1 , but Cluster4 also had significantly worse, severely abnormal VDP (7 ± 5% vs. 41 ± 12%). DATA CONCLUSION: We generated four proof-of-concept MRI-derived clusters of asthma with distinct structure-function pathologies. Cluster analysis of asthma using 129 Xe MRI in combination with CT biomarkers is feasible and may challenge currently used paradigms for asthma phenotyping and treatment decisions. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage.


Asunto(s)
Asma , Broncodilatadores , Asma/diagnóstico por imagen , Broncodilatadores/uso terapéutico , Análisis por Conglomerados , Femenino , Humanos , Pulmón/patología , Imagen por Resonancia Magnética/métodos , Fenotipo , Estudios Retrospectivos
4.
Am J Respir Crit Care Med ; 201(8): 923-933, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31895987

RESUMEN

Rationale: In patients with asthma, X-ray computed tomography (CT) has provided evidence of thickened airway walls and airway occlusions, but the total number of CT-visible airways and its relationship with disease severity is unknown.Objectives: To measure CT total airway count (TAC) in asthma and evaluate relationships with asthma severity, airway morphology, pulmonary function, and magnetic resonance imaging (MRI) ventilation.Methods: Participants underwent post-bronchodilator inspiratory CT, and prebronchodilator and post-bronchodilator spirometry and hyperpolarized 3He MRI. CT TAC was quantified as the sum of airways in the segmented airway tree, and airway wall area percent (WA%) and lumen area were measured. MRI ventilation abnormalities were quantified as the ventilation defect percent.Measurements and Main Results: We evaluated 70 participants, including 15 Global Initiative for Asthma (GINA) steps 1 to 3, 19 GINA 4, and 36 GINA 5 participants with asthma. As compared with GINA 1 to 3, TAC was significantly diminished in GINA 4 (P = 0.03) and GINA 5 (P = 0.045). Terminal airway intraluminal occlusion was present in 5 (2 GINA 4 and 3 GINA 5) of 70 participants. Sub-subsegmental airways were CT-invisible or missing in 69 out of 70 participants; the most common number of missing sub-subsegments was 10. Participants with ≥10 missing subsegments had worse WA% (P < 0.0001), lumen area (P < 0.0001), and ventilation defect percent (P = 0.03) than those with <10 missing subsegments. In a multivariable model, TAC (standardized regression coefficient = 0.50; P = 0.001) independently predicted FEV1 (R2 = 0.27; P = 0.003) and, in a separate model, TAC (standardized regression coefficient = -0.53; P < 0.0001) independently predicted airway WA% (R2 = 0.32; P = 0.0001).Conclusions: TAC was significantly diminished in participants with greater asthma severity and was related to airway wall thickness and ventilation defects. Fewer airways in severe than in mild asthma challenges our understanding of airway disease in asthma.Clinical trial registered with www.clinicaltrials.gov (NCT02351141).


Asunto(s)
Asma/diagnóstico por imagen , Bronquios/diagnóstico por imagen , Adulto , Asma/fisiopatología , Bronquios/patología , Femenino , Volumen Espiratorio Forzado , Humanos , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Pletismografía , Ventilación Pulmonar/fisiología , Índice de Severidad de la Enfermedad , Espirometría , Tomografía Computarizada por Rayos X , Capacidad Vital
5.
Radiology ; 295(1): 227-236, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32096708

RESUMEN

Background Pulmonary imaging of chronic obstructive pulmonary disease (COPD) has focused on CT or MRI measurements, but these have not been evaluated in combination. Purpose To generate multiparametric response map (mPRM) measurements in ex-smokers with or without COPD by using volume-matched CT and hyperpolarized helium 3 (3He) MRI. Materials and Methods In this prospective study (https://clinicaltrials.gov, NCT02279329), participants underwent MRI and CT and completed pulmonary function tests, questionnaires, and the 6-minute walk test between December 2010 and January 2019. Disease status was determined by using Global initiative for chronic Obstructive Lung Disease (GOLD) criteria. The mPRM voxel values were generated by using co-registered MRI and CT labels. Kruskal-Wallis and Bonferroni tests were used to determine differences across disease severity, and correlations were determined by using Spearman coefficients. Results A total of 175 ex-smokers (mean age, 69 years ± 9 [standard deviation], 108 men) with or without COPD were evaluated. Ex-smokers without COPD had a larger fraction of normal mPRM voxels (60% vs 37%, 20%, and 7% for GOLD I, II, and III/IV disease, respectively; all P ≤ .001) and a smaller fraction of abnormal voxels, including small airways disease (normal CT, not ventilated: 5% vs 6% [not significant], 11%, and 19% [P ≤ .001 for both] for GOLD I, II, and III/IV disease, respectively) and mild emphysema (normal CT, abnormal apparent diffusion coefficient [ADC]: 33% vs 54%, 56%, and 54% for GOLD I, II, and III/IV disease respectively; all P ≤ .001). Normal mPRM measurements were positively correlated with forced expiratory volume in 1 second (FEV1) (r = 0.65, P < .001), the FEV1-to-forced vital capacity ratio (r = 0.81, P < .001), and diffusing capacity (r = 0.75, P < .001) and were negatively correlated with worse quality of life (r = -0.48, P < .001). Abnormal mPRM measurements of small airways disease (normal CT, not ventilated) and mild emphysema (normal CT, abnormal ADC) were negatively correlated with FEV1 (r = -0.65 and -0.42, respectively; P < .001) and diffusing capacity (r = -0.53 and -0.60, respectively; P < .001) and were positively correlated with worse quality of life (r = 0.45 and r = 0.33, respectively; P < .001), both of which were present in ex-smokers without COPD. Conclusion Multiparametric response maps revealed two abnormal structure-function results related to emphysema and small airways disease, both of which were unexpectedly present in ex-smokers with normal spirometry and CT findings. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anciano , Femenino , Volumen Espiratorio Forzado , Helio , Humanos , Isótopos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Tomografía Computarizada por Rayos X/métodos
6.
Magn Reson Med ; 84(1): 416-426, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31765497

RESUMEN

PURPOSE: Multi-b diffusion-weighted hyperpolarized inhaled-gas MRI provides imaging biomarkers of terminal airspace enlargement including ADC and mean linear intercept (Lm ), but clinical translation has been limited because image acquisition requires relatively long or multiple breath-holds that are not well-tolerated by patients. Therefore, we aimed to accelerate single breath-hold 3D multi-b diffusion-weighted 129 Xe MRI, using k-space undersampling in imaging direction using a different undersampling pattern for different b-values combined with the stretched exponential model to generate maps of ventilation, apparent transverse relaxation time constant ( T2∗ ), ADC, and Lm values in a single, short breath-hold; accelerated and non-accelerated measurements were directly compared. METHODS: We evaluated multi-b (0, 12, 20, 30, and 45.5 s/cm2 ) diffusion-weighted 129 Xe T2∗ /ADC/morphometry estimates using acceleration factor (AF = 1 and 7) and multi-breath sampling in 3 volunteers (HV), and 6 participants with alpha-1 antitrypsin deficiency (AATD). RESULTS: For the HV subgroup, mean differences of 5%, 2%, and 8% were observed between fully sampled and undersampled k-space for ADC, Lm , and T2∗ values, respectively. For the AATD subgroup, mean differences were 9%, 6%, and 12% between fully sampled and undersampled k-space for ADC, Lm and T2∗ values, respectively. Although mean differences of 1% and 4.5% were observed between accelerated and multi-breath sampled ADC and Lm values, respectively, mean ADC/Lm estimates were not significantly different from corresponding mean ADCM /LmM or mean ADCA /LmA estimates (all P > 0.60 , A = undersampled and M = multi-breath sampled). CONCLUSIONS: Accelerated multi-b diffusion-weighted 129 Xe MRI is feasible at AF = 7 for generating pulmonary ADC and Lm in AATD and normal lung.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Isótopos de Xenón , Imagen de Difusión por Resonancia Magnética , Estudios de Factibilidad , Humanos , Pulmón , Imagen por Resonancia Magnética , Voluntarios
7.
Radiology ; 293(1): 212-220, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31385758

RESUMEN

Background Longitudinal progression to irreversible airflow limitation occurs in approximately 10% of patients with asthma, but it is difficult to identify patients who are at risk for this transition. Purpose To investigate 6-year longitudinal changes in hyperpolarized helium 3 (3He) MRI ventilation defects in study participants with mild-to-moderate asthma and identify predictors of longitudinal changes in postbronchodilator forced expiratory volume in 1 second (FEV1) reversibility Materials and Methods Spirometry and hyperpolarized 3He MRI were evaluated in participants with mild-to-moderate asthma in two prospectively planned visits approximately 6 years apart. Participants underwent methacholine challenge at baseline (January 2010 to April 2011) and pre- and postbronchodilator evaluations at follow-up (November 2016 to June 2017). FEV1 and MRI ventilation defects, quantified as ventilation defect volume (VDV), were compared between visits by using paired t tests. Participants were dichotomized by postbronchodilator change in FEV1 at follow-up, and differences between reversible and not-reversible groups were determined by using unpaired t tests. Multivariable models were generated to explain postbronchodilator FEV1 reversibility at follow-up. Results Eleven participants with asthma (mean age, 42 years ± 9 [standard deviation]; seven men) were evaluated at baseline and after mean 78 months ± 7. Medications, exacerbations, FEV1 (76% predicted vs 76% predicted; P = .91), and VDV (240 mL vs 250 mL; P = .92) were not different between visits. In eight of 11 participants (73%), MRI ventilation defects at baseline were at the same location in the lung at follow-up MRI. In the remaining three participants (27%), MRI ventilation defects worsened at the same lung locations as depicted at baseline methacholine-induced ventilation. At follow-up, postbronchodilator FEV1 was not reversible in six of 11 participants; the concentration of methacholine to decrease FEV1 by 20% (PC20) was greater in FEV1-irreversible participants at follow-up (P = .01). In a multivariable model, baseline MRI VDV helped to predict postbronchodilator reversibility at follow-up (R 2 = 0.80; P < .01), but PC20, age, and FEV1 did not (R 2 = 0.63; P = .15). Conclusion MRI-derived, spatially persistent ventilation defects predict postbronchodilator reversibility 78 months ± 7 later for participants with mild-to-moderate asthma in whom there were no changes in lung function, medication, or exacerbations. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Stojanovska in this issue.


Asunto(s)
Asma/tratamiento farmacológico , Asma/fisiopatología , Broncodilatadores/uso terapéutico , Helio , Isótopos , Imagen por Resonancia Magnética/métodos , Adulto , Asma/diagnóstico por imagen , Pruebas de Provocación Bronquial/estadística & datos numéricos , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Pulmón/diagnóstico por imagen , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas
8.
Radiology ; 293(3): 676-684, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31638491

RESUMEN

Background Fixed airflow limitation and ventilation heterogeneity are common in chronic obstructive pulmonary disease (COPD). Conventional noncontrast CT provides airway and parenchymal measurements but cannot be used to directly determine lung function. Purpose To develop, train, and test a CT texture analysis and machine-learning algorithm to predict lung ventilation heterogeneity in participants with COPD. Materials and Methods In this prospective study (ClinicalTrials.gov: NCT02723474; conducted from January 2010 to February 2017), participants were randomized to optimization (n = 1), training (n = 67), and testing (n = 27) data sets. Hyperpolarized (HP) helium 3 (3He) MRI ventilation maps were co-registered with thoracic CT to provide ground truth labels, and 87 quantitative imaging features were extracted and normalized to lung averages to generate 174 features. The volume-of-interest dimension and the training data sampling method were optimized to maximize the area under the receiver operating characteristic curve (AUC). Forward feature selection was performed to reduce the number of features; logistic regression, linear support vector machine, and quadratic support vector machine classifiers were trained through fivefold cross validation. The highest-performing classification model was applied to the test data set. Pearson coefficients were used to determine the relationships between the model, MRI, and pulmonary function measurements. Results The quadratic support vector machine performed best in training and was applied to the test data set. Model-predicted ventilation maps had an accuracy of 88% (95% confidence interval [CI]: 88%, 88%) and an AUC of 0.82 (95% CI: 0.82, 0.83) when the HP 3He MRI ventilation maps were used as the reference standard. Model-predicted ventilation defect percentage (VDP) was correlated with VDP at HP 3He MRI (r = 0.90, P < .001). Both model-predicted and HP 3He MRI VDP were correlated with forced expiratory volume in 1 second (FEV1) (model: r = -0.65, P < .001; MRI: r = -0.70, P < .001), ratio of FEV1 to forced vital capacity (model: r = -0.73, P < .001; MRI: r = -0.75, P < .001), diffusing capacity (model: r = -0.69, P < .001; MRI: r = -0.65, P < .001), and quality-of-life score (model: r = 0.59, P = .001; MRI: r = 0.65, P < .001). Conclusion Model-predicted ventilation maps generated by using CT textures and machine learning were correlated with MRI ventilation maps (r = 0.90, P < .001). © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Fain in this issue.


Asunto(s)
Aprendizaje Automático , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Ventilación Pulmonar , Máquina de Vectores de Soporte
9.
Magn Reson Med ; 81(3): 2135-2146, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30362609

RESUMEN

PURPOSE: To develop a rapid Fourier decomposition (FD) free-breathing pulmonary 1 H MRI (FDMRI) image processing and biomarker pipeline for research use. METHODS: We acquired MRI in 20 asthmatic subjects using a balanced steady-state free precession (bSSFP) sequence optimized for ventilation imaging. 2D 1 H MRI series were segmented by enforcing the spatial similarity between adjacent images and the right-to-left lung volume-ratio. The segmented lung series were co-registered using a coarse-to-fine deformable registration framework that used dual optimization techniques. All pairwise registrations were implemented in parallel and FD was performed to generate 2D ventilation-weighted maps and ventilation-defect-percent (VDP). Lung segmentation and registration accuracy were evaluated by comparing algorithm and manual lung-masks, deformed manual lung-masks, and fiducials in the moving and fixed images using Dice-similarity-coefficient (DSC), mean-absolute-distance (MAD), and target-registration-error (TRE). The relationship of FD-VDP and 3 He-VDP was evaluated using the Pearson-correlation-coefficient (r) and Bland Altman analysis. Algorithm reproducibility was evaluated using the coefficient-of-variation (CoV) and intra-class-correlation-coefficient (ICC) for segmentation, registration, and FD-VDP components. RESULTS: For lung segmentation, there was a DSC of 95 ± 1.5% and MAD of 2.3 ± 0.5 mm, and for registration there was a DSC of 97 ± 0.8%, MAD of 1.6 ± 0.4 mm and TRE of 3.6 ± 1.2 mm. Reproducibility for segmentation DSC (CoV/ICC = 0.5%/0.92), registration TRE (CoV/ICC = 0.4%/0.98), and FD-VDP (Cov/ICC = 3.9%/0.97) was high. The pipeline required 10 min/subject. FD-VDP was correlated with 3 He-VDP (r = 0.69, P < 0.001) although there was a bias toward lower FD-VDP (bias = -4.9%). CONCLUSIONS: We developed and evaluated a pipeline that provides a rapid and precise method for FDMRI ventilation maps.


Asunto(s)
Asma/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Respiración , Adulto , Algoritmos , Biomarcadores , Gráficos por Computador , Femenino , Análisis de Fourier , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Lenguajes de Programación , Reproducibilidad de los Resultados , Pruebas de Función Respiratoria , Programas Informáticos
10.
J Magn Reson Imaging ; 50(1): 28-40, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30637857

RESUMEN

There are serious clinical gaps in our understanding of chronic lung disease that require novel, sensitive, and noninvasive in vivo measurements of the lung parenchyma to measure disease pathogenesis and progressive changes over time as well as response to treatment. Until recently, our knowledge and appreciation of the tissue changes that accompany lung disease has depended on ex vivo biopsy and concomitant histological and stereological measurements. These measurements have revealed the underlying pathologies that drive lung disease and have provided important observations about airway occlusion, obliteration of the terminal bronchioles and airspace enlargement, or fibrosis and their roles in disease initiation and progression. ex vivo tissue stereology and histology are the established gold standards and, more recently, micro-computed tomography (CT) measurements of ex vivo tissue samples has also been employed to reveal new mechanistic findings about the progression of obstructive lung disease in patients. While these approaches have provided important understandings using ex vivo analysis of excised samples, recently developed hyperpolarized noble gas MRI methods provide an opportunity to noninvasively measure acinar duct and terminal airway dimensions and geometry in vivo, and, without radiation burden. Therefore, in this review we summarize emerging pulmonary MRI morphometry methods that provide noninvasive in vivo measurements of the lung in patients with bronchopulmonary dysplasia and chronic obstructive pulmonary disease, among others. We discuss new findings, future research directions, as well as clinical opportunities to address current gaps in patient care and for testing of new therapies. Level of Evidence: 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2019;50:28-40.


Asunto(s)
Células Acinares/patología , Enfermedades Pulmonares/patología , Imagen por Resonancia Magnética/métodos , Alveolos Pulmonares/patología , Enfermedad Crónica , Predicción , Humanos , Pruebas de Función Respiratoria
11.
Radiology ; 287(2): 693-704, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29470939

RESUMEN

Purpose To measure regional specific ventilation with free-breathing hydrogen 1 (1H) magnetic resonance (MR) imaging without exogenous contrast material and to investigate correlations with hyperpolarized helium 3 (3He) MR imaging and pulmonary function test measurements in healthy volunteers and patients with asthma. Materials and Methods Subjects underwent free-breathing 1H and static breath-hold hyperpolarized 3He MR imaging as well as spirometry and plethysmography; participants were consecutively recruited between January and June 2017. Free-breathing 1H MR imaging was performed with an optimized balanced steady-state free-precession sequence; images were retrospectively grouped into tidal inspiration or tidal expiration volumes with exponentially weighted phase interpolation. MR imaging volumes were coregistered by using optical flow deformable registration to generate 1H MR imaging-derived specific ventilation maps. Hyperpolarized 3He MR imaging- and 1H MR imaging-derived specific ventilation maps were coregistered to quantify regional specific ventilation within hyperpolarized 3He MR imaging ventilation masks. Differences between groups were determined with the Mann-Whitney test and relationships were determined with Spearman (ρ) correlation coefficients. Statistical analyses were performed with software. Results Thirty subjects (median age: 50 years; interquartile range [IQR]: 30 years), including 23 with asthma and seven healthy volunteers, were evaluated. Both 1H MR imaging-derived specific ventilation and hyperpolarized 3He MR imaging-derived ventilation percentage were significantly greater in healthy volunteers than in patients with asthma (specific ventilation: 0.14 [IQR: 0.05] vs 0.08 [IQR: 0.06], respectively, P < .0001; ventilation percentage: 99% [IQR: 1%] vs 94% [IQR: 5%], P < .0001). For all subjects, 1H MR imaging-derived specific ventilation correlated with plethysmography-derived specific ventilation (ρ = 0.54, P = .002) and hyperpolarized 3He MR imaging-derived ventilation percentage (ρ = 0.67, P < .0001) as well as with forced expiratory volume in 1 second (FEV1) (ρ = 0.65, P = .0001), ratio of FEV1 to forced vital capacity (ρ = 0.75, P < .0001), ratio of residual volume to total lung capacity (ρ = -0.68, P < .0001), and airway resistance (ρ = -0.51, P = .004). 1H MR imaging-derived specific ventilation was significantly greater in the gravitational-dependent versus nondependent lung in healthy subjects (P = .02) but not in patients with asthma (P = .1). In patients with asthma, coregistered 1H MR imaging specific ventilation and hyperpolarized 3He MR imaging maps showed that specific ventilation was diminished in corresponding 3He MR imaging ventilation defects (0.05 ± 0.04) compared with well-ventilated regions (0.09 ± 0.05) (P < .0001). Conclusion 1H MR imaging-derived specific ventilation correlated with plethysmography-derived specific ventilation and ventilation defects seen by using hyperpolarized 3He MR imaging. © RSNA, 2018 Online supplemental material is available for this article.


Asunto(s)
Asma/fisiopatología , Imagen por Resonancia Magnética , Respiración , Adulto , Anciano , Anciano de 80 o más Años , Asma/diagnóstico por imagen , Asma/metabolismo , Femenino , Voluntarios Sanos , Helio/metabolismo , Humanos , Hidrógeno/metabolismo , Interpretación de Imagen Asistida por Computador , Mediciones del Volumen Pulmonar , Masculino , Persona de Mediana Edad , Prueba de Estudio Conceptual , Intercambio Gaseoso Pulmonar , Reproducibilidad de los Resultados , Pruebas de Función Respiratoria , Estudios Retrospectivos , Adulto Joven
12.
Thorax ; 72(5): 475-477, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28258250

RESUMEN

: COPD biomarkers are urgently required for clinical trials of new therapies. We evaluated the longitudinal change and relationship of MRI and CT biomarkers of COPD with St. George's Respiratory Questionnaire (SGRO) and FEV1 worsening over 30 months. Among imaging biomarkers, only the longitudinal change in MRI ventilation defect percent (VDP) was greater in ever-smoker (n=34/p<0.05) and COPD (n=48/p<0.0001) subgroups compared with never-smokers (n=42). Only the longitudinal change in VDP was correlated with change in SGRQ (r=0.26/p=0.03), and only baseline VDP predicted longitudinal change in SGRQ>minimum clinically important difference (p=0.047) in mild-to-moderate COPD. These data strongly support the use of MRI intermediate endpoints in COPD studies. TRIAL REGISTRATION NUMBER: NCT02723474; Status: Recruiting.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Calidad de Vida , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/análisis , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Proyectos de Investigación , Pruebas de Función Respiratoria , Encuestas y Cuestionarios , Tomografía Computarizada por Rayos X
13.
Radiology ; 279(2): 597-608, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26744928

RESUMEN

PURPOSE: To directly compare magnetic resonance (MR) imaging and computed tomography (CT) parametric response map (PRM) measurements of gas trapping and emphysema in ex-smokers both with and without chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS: Participants provided written informed consent to a protocol that was approved by a local research ethics board and Health Canada and was compliant with the HIPAA (Institutional Review Board Reg. #00000940). The prospectively planned study was performed from March 2014 to December 2014 and included 58 ex-smokers (mean age, 73 years ± 9) with (n = 32; mean age, 74 years ± 7) and without (n = 26; mean age, 70 years ± 11) COPD. MR imaging (at functional residual capacity plus 1 L), CT (at full inspiration and expiration), and spirometry or plethysmography were performed during a 2-hour visit to generate ventilation defect percent (VDP), apparent diffusion coefficient (ADC), and PRM gas trapping and emphysema measurements. The relationships between pulmonary function and imaging measurements were determined with analysis of variance (ANOVA), Holm-Bonferroni corrected Pearson correlations, multivariate regression modeling, and the spatial overlap coefficient (SOC). RESULTS: VDP, ADC, and PRM gas trapping and emphysema (ANOVA, P < .001) measurements were significantly different in healthy ex-smokers than they were in ex-smokers with COPD. In all ex-smokers, VDP was correlated with PRM gas trapping (r = 0.58, P < .001) and with PRM emphysema (r = 0.68, P < .001). VDP was also significantly correlated with PRM in ex-smokers with COPD (gas trapping: r = 0.47 and P = .03; emphysema: r = 0.62 and P < .001) but not in healthy ex-smokers. In a multivariate model that predicted PRM gas trapping, the forced expiratory volume in 1 second normalized to the forced vital capacity (standardized coefficients [ßS] = -0.69, P = .001) and airway wall area percent (ßS = -0.22, P = .02) were significant predictors. PRM emphysema was predicted by the diffusing capacity for carbon monoxide (ßS = -0.29, P = .03) and VDP (ßS = 0.41, P = .001). Helium 3 ADC values were significantly elevated in PRM gas-trapping regions (P < .001). The spatial relationship for ventilation defects was significantly greater with PRM gas trapping than with PRM emphysema in patients with mild (for gas trapping, SOC = 36% ± 28; for emphysema, SOC = 1% ± 2; P = .001) and moderate (for gas trapping, SOC = 34% ± 28; for emphysema, SOC = 7% ± 15; P = .006) COPD. For severe COPD, the spatial relationship for ventilation defects with PRM emphysema (SOC = 64% ± 30) was significantly greater than that for PRM gas trapping (SOC = 36% ± 18; P = .01). CONCLUSION: In all ex-smokers, ADC values were significantly elevated in regions of PRM gas trapping, and VDP was quantitatively and spatially related to both PRM gas trapping and PRM emphysema. In patients with mild to moderate COPD, VDP was related to PRM gas trapping, whereas in patients with severe COPD, VDP correlated with both PRM gas trapping and PRM emphysema.


Asunto(s)
Helio/administración & dosificación , Imagen por Resonancia Magnética/métodos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/diagnóstico , Enfisema Pulmonar/fisiopatología , Tomografía Computarizada por Rayos X/métodos , Anciano , Biomarcadores , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Estudios Prospectivos , Pruebas de Función Respiratoria
14.
Eur Respir J ; 48(2): 370-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27174885

RESUMEN

In asthma patients, magnetic resonance imaging (MRI) and the lung clearance index (LCI) have revealed persistent ventilation heterogeneity, although its relationship to asthma control is not well understood. Therefore, our goal was to explore the relationship of MRI ventilation defects and the LCI with asthma control and quality of life in patients with severe, poorly controlled asthma.18 patients with severe, poorly controlled asthma (mean±sd 46±12 years, six males/12 females) provided written informed consent to an ethics board approved protocol, and underwent spirometry, LCI and (3)He MRI during a single 2-h visit. Asthma control and quality of life were evaluated using the Asthma Control Questionnaire (ACQ) and Asthma Quality of Life Questionnaire (AQLQ). Ventilation heterogeneity was quantified using the LCI and (3)He MRI ventilation defect percent (VDP).All participants reported poorly controlled disease (mean±sd ACQ score=2.3±0.9) and highly heterogeneous ventilation (mean±sd VDP=12±11% and LCI=10.5±3.0). While VDP and LCI were strongly correlated (r=0.86, p<0.0001), in a multivariate model that included forced expiratory volume in 1 s, VDP and LCI, VDP was the only independent predictor of asthma control (R(2)=0.38, p=0.01). There was also a significantly worse VDP, but not LCI in asthma patients with an ACQ score >2 (p=0.04) and AQLQ score <5 (p=0.04), and a trend towards worse VDP (p=0.053), but not LCI in asthma patients reporting ≥1 exacerbation in the past 6 months.In patients with poorly controlled, severe asthma MRI ventilation, but not LCI was significantly worse in those with worse ACQ and AQLQ.


Asunto(s)
Asma/fisiopatología , Pulmón/diagnóstico por imagen , Respiración , Adolescente , Adulto , Anciano , Bronquios/patología , Progresión de la Enfermedad , Femenino , Volumen Espiratorio Forzado , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Calidad de Vida , Espirometría , Encuestas y Cuestionarios , Adulto Joven
15.
COPD ; 13(1): 66-74, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26430763

RESUMEN

Evidence-based guidance for the use of airway clearance techniques (ACT) in chronic obstructive pulmonary disease (COPD) is lacking in-part because well-established measurements of pulmonary function such as the forced expiratory volume in 1s (FEV1) are relatively insensitive to ACT. The objective of this crossover study was to evaluate daily use of an oscillatory positive expiratory pressure (oPEP) device for 21-28 days in COPD patients who were self-identified as sputum-producers or non-sputum-producers. COPD volunteers provided written informed consent to daily oPEP use in a randomized crossover fashion. Participants completed baseline, crossover and study-end pulmonary function tests, St. George's Respiratory Questionnaire (SGRQ), Patient Evaluation Questionnaire (PEQ), Six-Minute Walk Test and (3)He magnetic resonance imaging (MRI) for the measurement of ventilation abnormalities using the ventilation defect percent (VDP). Fourteen COPD patients, self-identified as sputum-producers and 13 COPD-non-sputum-producers completed the study. Post-oPEP, the PEQ-ease-bringing-up-sputum was improved for sputum-producers (p = 0.005) and non-sputum-producers (p = 0.04), the magnitude of which was greater for sputum-producers (p = 0.03). There were significant post-oPEP improvements for sputum-producers only for FVC (p = 0.01), 6MWD (p = 0.04), SGRQ total score (p = 0.01) as well as PEQ-patient-global-assessment (p = 0.02). Clinically relevant post-oPEP improvements for PEQ-ease-bringing-up-sputum/PEQ-patient-global-assessment/SGRQ/VDP were observed in 8/7/9/6 of 14 sputum-producers and 2/0/3/3 of 13 non-sputum-producers. The post-oPEP change in (3)He MRI VDP was related to the change in PEQ-ease-bringing-up-sputum (r = 0.65, p = 0.0004) and FEV1 (r = -0.50, p = 0.009). In COPD patients with chronic sputum production, PEQ and SGRQ scores, FVC and 6MWD improved post-oPEP. FEV1 and PEQ-ease-bringing-up-sputum improvements were related to improved ventilation providing mechanistic evidence to support oPEP use in COPD. Clinical Trials # NCT02282189 and NCT02282202.


Asunto(s)
Pulmón/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/rehabilitación , Ventilación Pulmonar , Terapia Respiratoria/métodos , Esputo , Anciano , Estudios Cruzados , Femenino , Volumen Espiratorio Forzado , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Encuestas y Cuestionarios , Tomografía Computarizada por Rayos X , Capacidad Vital
16.
COPD ; 13(5): 601-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26788765

RESUMEN

Pulmonary ventilation may be visualized and measured using hyperpolarized (3)He magnetic resonance imaging (MRI) while emphysema and its distribution can be quantified using thoracic computed tomography (CT). Our objective was to phenotype ex-smokers with COPD based on the apical-to-basal distribution of ventilation abnormalities and emphysema to better understand how these phenotypes change regionally as COPD progresses. We evaluated 100 COPD ex-smokers who provided written informed consent and underwent spirometry, CT and (3)He MRI. (3)He MRI ventilation imaging was used to quantify the ventilation defect percent (VDP) for whole-lung and individual lung lobes. Regional VDP was used to generate the apical-lung (AL)-to-basal-lung (BL) difference (ΔVDP); a positive ΔVDP indicated AL-predominant and negative ΔVDP indicated BL-predominant ventilation defects. Emphysema was quantified using the relative-area-of-the-lung ≤-950HU (RA950) of the CT density histogram for whole-lung and individual lung lobes. The AL-to-BL RA950 difference (ΔRA950) was generated with a positive ΔRA950 indicating AL-predominant emphysema and a negative ΔRA950 indicating BL-predominant emphysema. Seventy-two ex-smokers reported BL-predominant MRI ventilation defects and 71 reported AL-predominant CT emphysema. BL-predominant ventilation defects (AL/BL: GOLD I = 18%/82%, GOLD II = 24%/76%) and AL-predominant emphysema (AL/BL: GOLD I = 84%/16%, GOLD II = 72%/28%) were the major phenotypes in mild-moderate COPD. In severe COPD there was a more uniform distribution for ventilation defects (AL/BL: GOLD III = 40%/60%, GOLD IV = 43%/57%) and emphysema (AL/BL: GOLD III = 64%/36%, GOLD IV = 43%/57%). Basal-lung ventilation defects predominated in mild-moderate GOLD grades, and a more homogeneous distribution of ventilation defects was observed in more advanced grade COPD; these differences suggest that over time, regional ventilation abnormalities become more homogenously distributed during disease progression.


Asunto(s)
Enfisema/diagnóstico por imagen , Pulmón/fisiopatología , Imagen por Resonancia Magnética/métodos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anciano , Anciano de 80 o más Años , Medios de Contraste , Femenino , Volumen Espiratorio Forzado , Helio , Humanos , Isótopos , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Fenotipo , Pletismografía , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Ventilación Pulmonar , Volumen Residual , Cese del Hábito de Fumar
17.
Radiology ; 277(3): 872-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26151081

RESUMEN

PURPOSE: To determine the role of imaging measurements of emphysema and airway disease in determining chronic obstructive pulmonary disease (COPD) symptoms and exercise limitation in patients with COPD, particularly in patients with mild-to-moderate disease. MATERIALS AND METHODS: Participants (n = 116) with Global Initiative for Chronic Obstructive Lung Disease (GOLD) grade U (unclassified) or grade I-IV COPD provided informed consent to an ethics board-approved HIPAA-compliant protocol and underwent spirometry and plethysmography, completed the St George's Respiratory Questionnaire (SGRQ), completed a 6-minute walk test for the 6-minute walk distance (6MWD), and underwent hyperpolarized helium 3 ((3)He) magnetic resonance (MR) imaging and computed tomography (CT). Emphysema was estimated by using the MR imaging apparent diffusion coefficient (ADC) and the relative area of the CT attenuation histogram with attenuation of -950 HU or less (RA950). Airway disease was measured by using the CT airway wall thickness of airways with an internal perimeter of 10 mm and total airway count. Ventilation defect percentage at (3)He MR imaging was used to measure ventilation. Multivariable regression models for the 6MWD and SGRQ symptom subscore were used to evaluate the relationships between physiologic and imaging measurements. RESULTS: Multivariate modeling for the 6MWD in 80 patients with GOLD grade U-II COPD showed that ADC (ß = 0.34, P = .04), diffusing capacity of the lung for carbon monoxide (ß = 0.60, P = .0008), and residual volume/total lung capacity (ß = -0.26, P = .02) were significant variables, while forced expiratory volume in 1 second (FEV1) and airway disease measurements were not. In 36 patients with GOLD grade III or IV disease, FEV1 (ß = 0.48, P = .01) was the only significant contributor in a multivariate model for 6MWD. MR imaging emphysema measurements also made the greatest relative contribution to symptoms in patients with milder (GOLD grade U-II) COPD (ADC: ß = 0.60, P = .005; RA950: ß = -0.52, P = .02; FEV1: ß = -0.45, P = .0002) and in grade III or IV disease (ADC: ß = 0.95, P = .01; RA950: ß = -0.62, P = .07; airway count: ß = -0.49, P = .01). CONCLUSION: In patients with mild-to-moderate COPD, MR imaging emphysema measurements played a dominant role in the expression of exercise limitation, while both CT and MR imaging measurements of emphysema explained symptoms.


Asunto(s)
Enfisema/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedades Respiratorias/fisiopatología , Anciano , Anciano de 80 o más Años , Interpretación Estadística de Datos , Enfisema/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas de Función Respiratoria , Enfermedades Respiratorias/patología , Encuestas y Cuestionarios , Tomografía Computarizada por Rayos X , Andadores
19.
J Magn Reson Imaging ; 41(5): 1465-74, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24965907

RESUMEN

BACKGROUND: To evaluate ultra-short-echo-time (UTE) MRI pulmonary signal-intensity measurements and reproducibility in chronic obstructive pulmonary disease (COPD). METHODS: A two-dimensional sequence (echo-time = 0.05 ms; acquisition-time = 13 s) with interleaved half-pulse excitation and radial ramp-sampling was used with compressed-sensing to reconstruct UTE images from under-sampled data. Five healthy volunteers and 15 subjects with COPD provided written informed consent to imaging and pulmonary-function-tests. Healthy volunteers underwent MRI at four lung volumes: full-expiration, functional-residual-capacity (FRC), FRC+1L, and full-inhalation; COPD patients underwent computed-tomography (CT) and MRI at FRC+1L. Three-week reproducibility was evaluated and the relative area of the density histogram ≤ -950 HU (RA950 ) was compared with mean MRI signal-intensity. The 15th percentile of signal-intensity-histogram (SI15 ) was compared with the 15th percentile of the CT-density-histogram (HU15 ). RESULTS: In healthy subjects, signal-intensity correlated with the inverse of lung volume (r = 0.99; P = 0.007). Contrast-to-noise and signal-to-noise ratios were significantly improved for 32-channel UTE (P < 0.01). The coefficient of variation for 3-week repeated measurements was 4%. There were significant correlations for signal-intensity with RA950 (r = -0.71; P = 0.005), FEV1 /FVC (r = 0.59; P = 0.02), and for SI15 with HU15 (r = 0.62; P = 0.01). CONCLUSION: Pulmonary signal-intensity is reproducible and related to tissue density. In COPD subjects with and without bronchiectasis, signal-intensity was also related to pulmonary function and CT measurements.


Asunto(s)
Algoritmos , Bronquiectasia/patología , Interpretación de Imagen Asistida por Computador/métodos , Pulmón/patología , Imagen por Resonancia Magnética/métodos , Enfermedad Pulmonar Obstructiva Crónica/patología , Adulto , Anciano , Bronquiectasia/complicaciones , Compresión de Datos/métodos , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
20.
COPD ; 12(1): 62-70, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24921977

RESUMEN

It is well-established that COPD patients have a burden of vascular disease that cannot be fully-explained by smoking history but the mechanistic links between atherosclerosis and pulmonary disease in COPD patients are not well-understood. Moreover, in ex-smokers without symptoms or other evidence of COPD, subclinical pulmonary and vascular disease, although potentially present, has not been described or evaluated. Hence our aim was to use sensitive three-dimensional (3D) pulmonary and carotid imaging to quantify pulmonary airway/parenchyma abnormalities and atherosclerosis in ex-smokers without airflow limitation or symptoms consistent with COPD. We evaluated 61 subjects without airflow limitation including 34 never- (72 ± 6 years) and 27 ex-smokers (73 ± 9 years), who provided written informed consent to spirometry, plethysmography, (3)He magnetic resonance imaging (MRI) and carotid ultrasound (US) and, for ex-smokers alone, thoracic X-ray computed tomography (CT). Ex-smokers had significantly greater (3)He ventilation defect percent (VDP = 7%, p = 0.001) and carotid total plaque volume (TPV = 250 mm(3), p = 0.002) than never-smokers, although there were no significant differences for spirometry or plethysmography, and CT airway and emphysema measurements were normal. There were univariate relationships for (3)He VDP with carotid intima media thickness (IMT, r = 0.42, p = 0.004), TPV (r = 0.41, p = 0.006) and vessel wall volume (VWV, r = 0.40, p = 0.007). Multivariate models that included age, BMI, FEV1, DLCO and VDP showed that only VDP significantly predicted IMT (ß = 0.41, p = 0.001), VWV (ß = 0.45, p = 0.003) and TPV (ß = 0.38, p = 0.005). In summary, there was imaging evidence of mild airways disease and carotid plaque burden that were related and significantly greater in ex-smokers without airflow limitation than in never-smokers.


Asunto(s)
Enfermedades de las Arterias Carótidas/etiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Cese del Hábito de Fumar , Fumar/efectos adversos , Anciano , Anciano de 80 o más Años , Enfermedades de las Arterias Carótidas/diagnóstico , Grosor Intima-Media Carotídeo , Estudios de Casos y Controles , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Pletismografía , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Análisis de Regresión , Factores de Riesgo , Índice de Severidad de la Enfermedad , Espirometría , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA