Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30983909

RESUMEN

We report on a novel semiconductor reliability technique that incorporates an electrically detected magnetic resonance (EDMR) spectrometer within a conventional semiconductor wafer probing station. EDMR is an ultrasensitive electron paramagnetic resonance technique with the capability to provide detailed physical and chemical information about reliability limiting defects in semiconductor devices. EDMR measurements have generally required a complex apparatus, not typically found in solid-state electronics laboratories. The union of a semiconductor probing station with EDMR allows powerful analytical measurements to be performed within individual devices at the wafer level. Our novel approach replaces the standard magnetic resonance microwave cavity or resonator with a small non- resonant near field microwave probe. Using this new approach we have demonstrated bipolar amplification effect and spin dependent charge pumping in various SiC based MOSFET structures. Although our studies have been limited to SiC based devices, the approach will be widely applicable to other types of MOSFETs, bipolar junction transistors, and various memory devices. The replacement of the resonance cavity with the very small non- resonant microwave probe greatly simplifies the EDMR detection scheme and allows for the incorporation of this powerful tool with a wafer probing station. We believe this scheme offers great promise for widespread utilization of EDMR in semiconductor reliability laboratories.

2.
Rev Sci Instrum ; 90(12): 123111, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31893768

RESUMEN

We have developed a sensitive electron nuclear double resonance spectrometer in which the detection takes place through electrically detected magnetic resonance. We demonstrate that the spectrometer can provide reasonably high signal to noise spectra of 14N interactions with deep level centers in a fully processed bipolar junction transistor at room temperature.

3.
Rev Sci Instrum ; 90(1): 014708, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30709237

RESUMEN

We report on a novel electron paramagnetic resonance (EPR) technique that merges electrically detected magnetic resonance (EDMR) with a conventional semiconductor wafer probing station. This union, which we refer to as wafer-level EDMR (WL-EDMR), allows EDMR measurements to be performed on an unaltered, fully processed semiconductor wafer. Our measurements replace the conventional EPR microwave cavity or resonator with a very small non-resonant near-field microwave probe. Bipolar amplification effect, spin dependent charge pumping, and spatially resolved EDMR are demonstrated on various planar 4H-silicon carbide metal-oxide-semiconductor field-effect transistor (4H-SiC MOSFET) structures. 4H-SiC is a wide bandgap semiconductor and the leading polytype for high-temperature and high-power MOSFET applications. These measurements are made via both "rapid scan" frequency-swept EDMR and "slow scan" frequency swept EDMR. The elimination of the resonance cavity and incorporation with a wafer probing station greatly simplifies the EDMR detection scheme and offers promise for widespread EDMR adoption in semiconductor reliability laboratories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA