Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 555(7697): 534-537, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29539640

RESUMEN

In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton. Although most dissolved iron in the marine environment is complexed with organic molecules, picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms. Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts, including the ferric iron-concentrating protein ISIP2A, but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution and are abundant in marine environmental genomic datasets, suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.


Asunto(s)
Carbonatos/metabolismo , Diatomeas/metabolismo , Hierro/metabolismo , Transferrina/metabolismo , Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Transporte Biológico , Diatomeas/genética , Endocitosis , Evolución Molecular , Genoma/genética , Humanos , Concentración de Iones de Hidrógeno , Fitoplancton/clasificación , Fitoplancton/genética , Fitoplancton/metabolismo , Agua de Mar/química
2.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301906

RESUMEN

The Southern Ocean (SO) harbors some of the most intense phytoplankton blooms on Earth. Changes in temperature and iron availability are expected to alter the intensity of SO phytoplankton blooms, but little is known about how these changes will influence community composition and downstream biogeochemical processes. We performed light-saturated experimental manipulations on surface ocean microbial communities from McMurdo Sound in the Ross Sea to examine the effects of increased iron availability (+2 nM) and warming (+3 and +6 °C) on nutrient uptake, as well as the growth and transcriptional responses of two dominant diatoms, Fragilariopsis and Pseudo-nitzschia We found that community nutrient uptake and primary productivity were elevated under both warming conditions without iron addition (relative to ambient -0.5 °C). This effect was greater than additive under concurrent iron addition and warming. Pseudo-nitzschia became more abundant under warming without added iron (especially at 6 °C), while Fragilariopsis only became more abundant under warming in the iron-added treatments. We attribute the apparent advantage Pseudo-nitzschia shows under warming to up-regulation of iron-conserving photosynthetic processes, utilization of iron-economic nitrogen assimilation mechanisms, and increased iron uptake and storage. These data identify important molecular and physiological differences between dominant diatom groups and add to the growing body of evidence for Pseudo-nitzschia's increasingly important role in warming SO ecosystems. This study also suggests that temperature-driven shifts in SO phytoplankton assemblages may increase utilization of the vast pool of excess nutrients in iron-limited SO surface waters and thereby influence global nutrient distribution and carbon cycling.


Asunto(s)
Cambio Climático , Diatomeas/fisiología , Ecosistema , Océanos y Mares , Eutrofización , Regulación de la Expresión Génica , Complejos de Proteína Captadores de Luz/metabolismo , Nitrógeno/metabolismo , Fotosíntesis/fisiología , Fitoplancton , Plastocianina
3.
Environ Microbiol ; 23(11): 6734-6748, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34431195

RESUMEN

We used 16S, 18S, plastid and internal transcribed spacer (for Synechococcus strains) sequencing to quantify relative microbial abundances in water-column samples and on sediment-trap-collected particles across an environmental gradient in the California Current Ecosystem (CCE) spanning a > 60-fold range of surface chlorophyll. Most mixed-layer dominant eukaryotes and prokaryotes were consistently underrepresented on sinking particles. Diatoms were the only phototrophic taxa consistently overrepresented. Even within this class, however, one genus (Thalassiosira) was a particle-enriched dominant, while a similarly abundant species was poorly represented. Synechococcus was significantly enriched on sinking particles at only one of four sites, but clade I was disproportionately abundant on sinking particles throughout the region compared with clade IV, the euphotic-zone co-dominant. The most abundant microbes on particles across the CCE were organisms with distributional maxima close to the sediment-trap depth (rhizarians), microbes associated with metazoans or sinking particles as a nutritional habitat (certain alveolates, Gammaproteobacteria) and organisms that resist digestive degradation of their DNA (Thalassiosira, Synechococcus). For assessing taxon contributions of phytoplankton to carbon export, our results highlight the need for sequence-based quantitative approaches that can be used to integrate euphotic-zone abundances, compute rates and account for taxon differences in preservation of sequence markers through trophic processing.


Asunto(s)
Diatomeas , Microbiota , Diatomeas/genética , Digestión , Ecosistema , Microbiota/genética , Fitoplancton/genética , Agua de Mar/microbiología
4.
Mol Ecol ; 29(11): 2080-2093, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32578266

RESUMEN

Warming, eutrophication (nutrient fertilization) and brownification (increased loading of allochthonous organic matter) are three global trends impacting lake ecosystems. However, the independent and synergistic effects of resource addition and warming on autotrophic and heterotrophic microorganisms are largely unknown. In this study, we investigate the independent and interactive effects of temperature, dissolved organic carbon (DOC, both allochthonous and autochthonous) and nitrogen (N) supply, in addition to the effect of spatial variables, on the composition, richness, and evenness of prokaryotic and eukaryotic microbial communities in lakes across elevation and N deposition gradients in the Sierra Nevada mountains of California, USA. We found that both prokaryotic and eukaryotic communities are structured by temperature, terrestrial (allochthonous) DOC and latitude. Prokaryotic communities are also influenced by total and aquatic (autochthonous) DOC, while eukaryotic communities are also structured by nitrate. Additionally, increasing N availability was associated with reduced richness of prokaryotic communities, and both lower richness and evenness of eukaryotes. We did not detect any synergistic or antagonistic effects as there were no interactions among temperature and resource variables. Together, our results suggest that (a) organic and inorganic resources, temperature, and geographic location (based on latitude and longitude) independently influence lake microbial communities; and (b) increasing N supply due to atmospheric N deposition may reduce richness of both prokaryotic and eukaryotic microbes, probably by reducing niche dimensionality. Our study provides insight into abiotic processes structuring microbial communities across environmental gradients and their potential roles in material and energy fluxes within and between ecosystems.


Asunto(s)
Lagos/microbiología , Microbiota , Temperatura , California , Carbono , Ecosistema , Eutrofización , Nitrógeno
5.
Plant Cell ; 29(8): 2047-2070, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28765511

RESUMEN

The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO3-). To investigate the cellular and genetic basis of diatom NO3- assimilation, we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum In NR-KO cells, N-assimilation was abolished although NO3- transport remained intact. Unassimilated NO3- accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO3- chloride channel transporters plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO3- Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO3-, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO3- addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO3- replete and deplete conditions.


Asunto(s)
Ciclo del Carbono , Diatomeas/enzimología , Diatomeas/metabolismo , Técnicas de Inactivación de Genes , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Transporte Biológico/efectos de los fármacos , Vías Biosintéticas/genética , Carbono/metabolismo , Ciclo del Carbono/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Clorofila/biosíntesis , Diatomeas/fisiología , Diatomeas/ultraestructura , Ésteres/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Nitratos/farmacología , Fotosíntesis/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Tilacoides/efectos de los fármacos , Tilacoides/metabolismo , Transcripción Genética/efectos de los fármacos , Transcriptoma/genética , Triglicéridos/metabolismo , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
7.
PLoS Genet ; 12(12): e1006490, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27973599

RESUMEN

Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved in the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic understanding for the ability of diatoms to remain metabolically poised to respond quickly to Fe input and revealing strategies underlying their ecological success.


Asunto(s)
Diatomeas/metabolismo , Hierro/metabolismo , Fotoperiodo , Transcriptoma/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , División Celular/efectos de los fármacos , División Celular/genética , Cloroplastos/genética , Diatomeas/efectos de los fármacos , Diatomeas/crecimiento & desarrollo , Expresión Génica , Hierro/farmacología , Redes y Vías Metabólicas/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos
8.
Proc Natl Acad Sci U S A ; 112(32): 9938-43, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26221022

RESUMEN

Southern Ocean primary productivity plays a key role in global ocean biogeochemistry and climate. At the Southern Ocean sea ice edge in coastal McMurdo Sound, we observed simultaneous cobalamin and iron limitation of surface water phytoplankton communities in late Austral summer. Cobalamin is produced only by bacteria and archaea, suggesting phytoplankton-bacterial interactions must play a role in this limitation. To characterize these interactions and investigate the molecular basis of multiple nutrient limitation, we examined transitions in global gene expression over short time scales, induced by shifts in micronutrient availability. Diatoms, the dominant primary producers, exhibited transcriptional patterns indicative of co-occurring iron and cobalamin deprivation. The major contributor to cobalamin biosynthesis gene expression was a gammaproteobacterial population, Oceanospirillaceae ASP10-02a. This group also contributed significantly to metagenomic cobalamin biosynthesis gene abundance throughout Southern Ocean surface waters. Oceanospirillaceae ASP10-02a displayed elevated expression of organic matter acquisition and cell surface attachment-related genes, consistent with a mutualistic relationship in which they are dependent on phytoplankton growth to fuel cobalamin production. Separate bacterial groups, including Methylophaga, appeared to rely on phytoplankton for carbon and energy sources, but displayed gene expression patterns consistent with iron and cobalamin deprivation. This suggests they also compete with phytoplankton and are important cobalamin consumers. Expression patterns of siderophore- related genes offer evidence for bacterial influences on iron availability as well. The nature and degree of this episodic colimitation appear to be mediated by a series of phytoplankton-bacterial interactions in both positive and negative feedback loops.


Asunto(s)
Bacterias/metabolismo , Ecosistema , Cubierta de Hielo , Interacciones Microbianas , Micronutrientes/metabolismo , Fitoplancton/metabolismo , Regiones Antárticas , Bacterias/efectos de los fármacos , Clorofila/metabolismo , Clorofila A , Retroalimentación Fisiológica/efectos de los fármacos , Hierro/farmacología , Interacciones Microbianas/efectos de los fármacos , Sistemas de Lectura Abierta/genética , Fitoplancton/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/efectos de los fármacos , Vitamina B 12/farmacología
9.
Nature ; 473(7346): 203-7, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21562560

RESUMEN

Diatoms dominate the biomass of phytoplankton in nutrient-rich conditions and form the basis of some of the world's most productive marine food webs. The diatom nuclear genome contains genes with bacterial and plastid origins as well as genes of the secondary endosymbiotic host (the exosymbiont), yet little is known about the relative contribution of each gene group to diatom metabolism. Here we show that the exosymbiont-derived ornithine-urea cycle, which is similar to that of metazoans but is absent in green algae and plants, facilitates rapid recovery from prolonged nitrogen limitation. RNA-interference-mediated knockdown of a mitochondrial carbamoyl phosphate synthase impairs the response of nitrogen-limited diatoms to nitrogen addition. Metabolomic analyses indicate that intermediates in the ornithine-urea cycle are particularly depleted and that both the tricarboxylic acid cycle and the glutamine synthetase/glutamate synthase cycles are linked directly with the ornithine-urea cycle. Several other depleted metabolites are generated from ornithine-urea cycle intermediates by the products of genes laterally acquired from bacteria. This metabolic coupling of bacterial- and exosymbiont-derived proteins seems to be fundamental to diatom physiology because the compounds affected include the major diatom osmolyte proline and the precursors for long-chain polyamines required for silica precipitation during cell wall formation. So far, the ornithine-urea cycle is only known for its essential role in the removal of fixed nitrogen in metazoans. In diatoms, this cycle serves as a distribution and repackaging hub for inorganic carbon and nitrogen and contributes significantly to the metabolic response of diatoms to episodic nitrogen availability. The diatom ornithine-urea cycle therefore represents a key pathway for anaplerotic carbon fixation into nitrogenous compounds that are essential for diatom growth and for the contribution of diatoms to marine productivity.


Asunto(s)
Diatomeas/clasificación , Diatomeas/metabolismo , Fotosíntesis , Filogenia , Urea/metabolismo , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Diatomeas/enzimología , Diatomeas/genética , Diatomeas/crecimiento & desarrollo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Nitratos/metabolismo , Interferencia de ARN
10.
Prostate ; 76(4): 349-58, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26660354

RESUMEN

BACKGROUND: Prostate cancer incidence and mortality rates are significantly increased in African-American men, but limited studies have been performed within Sub-Saharan African populations. As mitochondria control energy metabolism and apoptosis we speculate that somatic mutations within mitochondrial genomes are candidate drivers of aggressive prostate carcinogenesis. METHODS: We used matched blood and prostate tissue samples from 87 South African men (77 with African ancestry) to perform deep sequencing of complete mitochondrial genomes. Clinical presentation was biased toward aggressive disease (Gleason score >7, 64%), and compared with men without prostate cancer either with or without benign prostatic hyperplasia. RESULTS: We identified 144 somatic mtDNA single nucleotide variants (SNVs), of which 80 were observed in 39 men presenting with aggressive disease. Both the number and frequency of somatic mtDNA SNVs were associated with higher pathological stage. CONCLUSIONS: Besides doubling the total number of somatic PCa-associated mitochondrial genome mutations identified to date, we associate mutational load with aggressive prostate cancer status in men of African ancestry.


Asunto(s)
ADN Mitocondrial/genética , Variación Genética/genética , Genoma Mitocondrial/genética , Neoplasias de la Próstata/genética , Anciano , Anciano de 80 o más Años , Población Negra , ADN Mitocondrial/química , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Calicreínas/sangre , Masculino , Persona de Mediana Edad , Mutación/genética , Clasificación del Tumor , Polimorfismo de Nucleótido Simple/genética , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/patología , Sudáfrica , Población Blanca
11.
Nature ; 468(7320): 60-6, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21048761

RESUMEN

The understanding of marine microbial ecology and metabolism has been hampered by the paucity of sequenced reference genomes. To this end, we report the sequencing of 137 diverse marine isolates collected from around the world. We analysed these sequences, along with previously published marine prokaryotic genomes, in the context of marine metagenomic data, to gain insights into the ecology of the surface ocean prokaryotic picoplankton (0.1-3.0 µm size range). The results suggest that the sequenced genomes define two microbial groups: one composed of only a few taxa that are nearly always abundant in picoplanktonic communities, and the other consisting of many microbial taxa that are rarely abundant. The genomic content of the second group suggests that these microbes are capable of slow growth and survival in energy-limited environments, and rapid growth in energy-rich environments. By contrast, the abundant and cosmopolitan picoplanktonic prokaryotes for which there is genomic representation have smaller genomes, are probably capable of only slow growth and seem to be relatively unable to sense or rapidly acclimate to energy-rich conditions. Their genomic features also lead us to propose that one method used to avoid predation by viruses and/or bacterivores is by means of slow growth and the maintenance of low biomass.


Asunto(s)
Organismos Acuáticos/genética , Genómica , Metagenoma , Plancton/genética , Células Procariotas/metabolismo , Organismos Acuáticos/clasificación , Organismos Acuáticos/aislamiento & purificación , Organismos Acuáticos/virología , Biodiversidad , Biomasa , Bases de Datos de Proteínas , Genoma Bacteriano/genética , Modelos Biológicos , Océanos y Mares , Filogenia , Plancton/crecimiento & desarrollo , Plancton/aislamiento & purificación , Plancton/metabolismo , Células Procariotas/clasificación , Células Procariotas/virología , ARN Ribosómico 16S/genética , Microbiología del Agua
12.
Proc Natl Acad Sci U S A ; 107(33): 14679-84, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20668244

RESUMEN

Among eukaryotes, four major phytoplankton lineages are responsible for marine photosynthesis; prymnesiophytes, alveolates, stramenopiles, and prasinophytes. Contributions by individual taxa, however, are not well known, and genomes have been analyzed from only the latter two lineages. Tiny "picoplanktonic" members of the prymnesiophyte lineage have long been inferred to be ecologically important but remain poorly characterized. Here, we examine pico-prymnesiophyte evolutionary history and ecology using cultivation-independent methods. 18S rRNA gene analysis showed pico-prymnesiophytes belonged to broadly distributed uncultivated taxa. Therefore, we used targeted metagenomics to analyze uncultured pico-prymnesiophytes sorted by flow cytometry from subtropical North Atlantic waters. The data reveal a composite nuclear-encoded gene repertoire with strong green-lineage affiliations, which contrasts with the evolutionary history indicated by the plastid genome. Measured pico-prymnesiophyte growth rates were rapid in this region, resulting in primary production contributions similar to the cyanobacterium Prochlorococcus. On average, pico-prymnesiophytes formed 25% of global picophytoplankton biomass, with differing contributions in five biogeographical provinces spanning tropical to subpolar systems. Elements likely contributing to success include high gene density and genes potentially involved in defense and nutrient uptake. Our findings have implications reaching beyond pico-prymnesiophytes, to the prasinophytes and stramenopiles. For example, prevalence of putative Ni-containing superoxide dismutases (SODs), instead of Fe-containing SODs, seems to be a common adaptation among eukaryotic phytoplankton for reducing Fe quotas in low-Fe modern oceans. Moreover, highly mosaic gene repertoires, although compositionally distinct for each major eukaryotic lineage, now seem to be an underlying facet of successful marine phytoplankton.


Asunto(s)
Ecosistema , Metagenoma/genética , Metagenómica/métodos , Fitoplancton/genética , Secuencia de Aminoácidos , Biomasa , Eucariontes/clasificación , Eucariontes/genética , Eucariontes/crecimiento & desarrollo , Evolución Molecular , Florida , Geografía , Datos de Secuencia Molecular , Océanos y Mares , Filogenia , Fitoplancton/clasificación , Fitoplancton/crecimiento & desarrollo , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Estaciones del Año , Homología de Secuencia de Aminoácido , Temperatura
13.
ISME Commun ; 3(1): 99, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736763

RESUMEN

Environmental perturbations shape the structure and function of microbial communities. Oil spills are a major perturbation and resolving spills often requires active measures like dispersant application that can exacerbate the initial disturbance. Species-specific responses of microorganisms to oil and dispersant exposure during such perturbations remain largely unknown. We merged metatranscriptomic libraries with pangenomes to generate Core-Accessory Metatranscriptomes (CA-Metatranscriptomes) for two microbial hydrocarbon degraders that played important roles in the aftermath of the Deepwater Horizon oil spill. The Colwellia CA-Metatranscriptome illustrated pronounced dispersant-driven acceleration of core (~41%) and accessory gene (~59%) transcription, suggesting an opportunistic strategy. Marinobacter responded to oil exposure by expressing mainly accessory genes (~93%), suggesting an effective hydrocarbon-degrading lifestyle. The CA-Metatranscriptome approach offers a robust way to identify the underlying mechanisms of key microbial functions and highlights differences of specialist-vs-opportunistic responses to environmental disturbance.

14.
Plant Direct ; 6(1): e376, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35079683

RESUMEN

Diatoms are one of the most successful phytoplankton groups in our oceans, being responsible for over 20% of the Earth's photosynthetic productivity. Their chimeric genomes have genes derived from red algae, green algae, bacteria, and heterotrophs, resulting in multiple isoenzymes targeted to different cellular compartments with the potential for differential regulation under nutrient limitation. The resulting interactions between metabolic pathways are not yet fully understood. We previously showed how acclimation to Cu limitation enhanced susceptibility to overreduction of the photosynthetic electron transport chain and its reorganization to favor photoprotection over light harvesting in the oceanic diatom Thalassiosira oceanica (Hippmann et al., 2017, 10.1371/journal.pone.0181753). In order to gain a better understanding of the overall metabolic changes that help alleviate the stress of Cu limitation, we have further analyzed the comprehensive proteomic datasets generated in that study to identify differentially expressed proteins involved in carbon, nitrogen, and oxidative stress-related metabolic pathways. Metabolic pathway analysis showed integrated responses to Cu limitation. The upregulation of ferredoxin (Fdx) was correlated with upregulation of plastidial Fdx-dependent isoenzymes involved in nitrogen assimilation as well as enzymes involved in glutathione synthesis, thus suggesting an integration of nitrogen uptake and metabolism with photosynthesis and oxidative stress resistance. The differential expression of glycolytic isoenzymes located in the chloroplast and mitochondria may enable them to channel both excess electrons and/or ATP between these compartments. An additional support for chloroplast-mitochondrial cross-talk is the increased expression of chloroplast and mitochondrial proteins involved in the proposed malate shunt under Cu limitation.

15.
Nat Microbiol ; 6(2): 173-186, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33398100

RESUMEN

Marine microeukaryotes play a fundamental role in biogeochemical cycling through the transfer of energy to higher trophic levels and vertical carbon transport. Despite their global importance, microeukaryote physiology, nutrient metabolism and contributions to carbon cycling across offshore ecosystems are poorly characterized. Here, we observed the prevalence of dinoflagellates along a 4,600-km meridional transect extending across the central Pacific Ocean, where oligotrophic gyres meet equatorial upwelling waters rich in macronutrients yet low in dissolved iron. A combined multi-omics and geochemical analysis provided a window into dinoflagellate metabolism across the transect, indicating a continuous taxonomic dinoflagellate community that shifted its functional transcriptome and proteome as it extended from the euphotic to the mesopelagic zone. In euphotic waters, multi-omics data suggested that a combination of trophic modes were utilized, while mesopelagic metabolism was marked by cytoskeletal investments and nutrient recycling. Rearrangement in nutrient metabolism was evident in response to variable nitrogen and iron regimes across the gradient, with no associated change in community assemblage. Total dinoflagellate proteins scaled with particulate carbon export, with both elevated in equatorial waters, suggesting a link between dinoflagellate abundance and total carbon flux. Dinoflagellates employ numerous metabolic strategies that enable broad occupation of central Pacific ecosystems and play a dual role in carbon transformation through both photosynthetic fixation in the euphotic zone and remineralization in the mesopelagic zone.


Asunto(s)
Ciclo del Carbono , Dinoflagelados/metabolismo , Agua de Mar/parasitología , Dinoflagelados/clasificación , Océano Pacífico , Filogenia , Proteínas Protozoarias/metabolismo
16.
Nat Microbiol ; 4(11): 1790-1797, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31308524

RESUMEN

Diatoms are among the most globally distributed and ecologically successful organisms in the modern ocean, contributing upwards of 40% of total marine primary productivity1,2. By converting dissolved silicon into biogenic silica, and photosynthetically fixing carbon dioxide into particulate organic carbon, diatoms effectively couple the silicon (Si) and carbon cycles and ballast substantial vertical flux of carbon out of the euphotic zone into the mesopelagic and deep ocean3-5. Viruses are key players in ocean biogeochemical cycles6,7, yet little is known about how viral infection specifically impacts diatom populations. Here, we show that Si limitation facilitates virus infection and mortality in diatoms in the highly productive coastal waters of the California Current Ecosystem. Using metatranscriptomic analysis of cell-associated diatom viruses and targeted quantification of extracellular viruses, we found a link between Si stress and the early, active and lytic stages of viral infection. This relationship was also observed in cultures of the bloom-forming diatom Chaetoceros tenuissimus, where Si stress accelerated virus-induced mortality. Together, these findings contextualize viruses within the ecophysiological framework of Si availability and diatom-mediated biogeochemical cycling.


Asunto(s)
Diatomeas/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Silicio/metabolismo , Virus/patogenicidad , Biodegradación Ambiental , California , Carbono/metabolismo , Dióxido de Carbono , Diatomeas/metabolismo , Diatomeas/virología , Metagenómica , Análisis de Secuencia de ARN , Virus/clasificación , Virus/genética
17.
Nat Commun ; 10(1): 4552, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31591397

RESUMEN

Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa.


Asunto(s)
Diatomeas/genética , Diatomeas/metabolismo , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Carbono/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Evolución Molecular , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Metabolómica/métodos , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Biológicos , Nitratos/metabolismo , Proteómica/métodos , Agua de Mar/microbiología , Transducción de Señal/genética
18.
Science ; 361(6409): 1356-1358, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30262498

RESUMEN

Oceanic harmful algal blooms of Pseudo-nitzschia diatoms produce the potent mammalian neurotoxin domoic acid (DA). Despite decades of research, the molecular basis for its biosynthesis is not known. By using growth conditions known to induce DA production in Pseudo-nitzschia multiseries, we implemented transcriptome sequencing in order to identify DA biosynthesis genes that colocalize in a genomic four-gene cluster. We biochemically investigated the recombinant DA biosynthetic enzymes and linked their mechanisms to the construction of DA's diagnostic pyrrolidine skeleton, establishing a model for DA biosynthesis. Knowledge of the genetic basis for toxin production provides an orthogonal approach to bloom monitoring and enables study of environmental factors that drive oceanic DA production.


Asunto(s)
Diatomeas/metabolismo , Eutrofización , Ácido Kaínico/análogos & derivados , Neurotoxinas/biosíntesis , Diatomeas/genética , Ácido Kaínico/química , Ácido Kaínico/metabolismo , Familia de Multigenes , Neurotoxinas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
PLoS One ; 12(8): e0181753, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28837661

RESUMEN

There is an intricate interaction between iron (Fe) and copper (Cu) physiology in diatoms. However, strategies to cope with low Cu are largely unknown. This study unveils the comprehensive restructuring of the photosynthetic apparatus in the diatom Thalassiosira oceanica (CCMP1003) in response to low Cu, at the physiological and proteomic level. The restructuring results in a shift from light harvesting for photochemistry-and ultimately for carbon fixation-to photoprotection, reducing carbon fixation and oxygen evolution. The observed decreases in the physiological parameters Fv/Fm, carbon fixation, and oxygen evolution, concomitant with increases in the antennae absorption cross section (σPSII), non-photochemical quenching (NPQ) and the conversion factor (φe:C/ηPSII) are in agreement with well documented cellular responses to low Fe. However, the underlying proteomic changes due to low Cu are very different from those elicited by low Fe. Low Cu induces a significant four-fold reduction in the Cu-containing photosynthetic electron carrier plastocyanin. The decrease in plastocyanin causes a bottleneck within the photosynthetic electron transport chain (ETC), ultimately leading to substantial stoichiometric changes. Namely, 2-fold reduction in both cytochrome b6f complex (cytb6f) and photosystem II (PSII), no change in the Fe-rich PSI and a 40- and 2-fold increase in proteins potentially involved in detoxification of reactive oxygen species (ferredoxin and ferredoxin:NADP+ reductase, respectively). Furthermore, we identify 48 light harvesting complex (LHC) proteins in the publicly available genome of T. oceanica and provide proteomic evidence for 33 of these. The change in the LHC composition within the antennae in response to low Cu underlines the shift from photochemistry to photoprotection in T. oceanica (CCMP1003). Interestingly, we also reveal very significant intra-specific strain differences. Another strain of T. oceanica (CCMP 1005) requires significantly higher Cu concentrations to sustain both its maximal and minimal growth rate compared to CCMP 1003. Under low Cu, CCMP 1005 decreases its growth rate, cell size, Chla and total protein per cell. We argue that the reduction in protein per cell is the main strategy to decrease its cellular Cu requirement, as none of the other parameters tested are affected. Differences between the two strains, as well as differences between the well documented responses to low Fe and those presented here in response to low Cu are discussed.


Asunto(s)
Cobre/metabolismo , Diatomeas/metabolismo , Fotosíntesis , Secuencia de Aminoácidos , Radioisótopos de Carbono/metabolismo , Cromatografía Liquida , Diatomeas/clasificación , Diatomeas/genética , Transporte de Electrón , Etiquetas de Secuencia Expresada , Fluorescencia , Biología Marina , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteoma , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem , Transcriptoma
20.
mSystems ; 2(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28217745

RESUMEN

Metagenomic and metatranscriptomic data were generated from size-fractionated samples from 11 sites within the Baltic Sea and adjacent marine waters of Kattegat and freshwater Lake Torneträsk in order to investigate the diversity, distribution, and transcriptional activity of virioplankton. Such a transect, spanning a salinity gradient from freshwater to the open sea, facilitated a broad genome-enabled investigation of natural as well as impacted aspects of Baltic Sea viral communities. Taxonomic signatures representative of phages within the widely distributed order Caudovirales were identified with enrichments in lesser-known families such as Podoviridae and Siphoviridae. The distribution of phage reported to infect diverse and ubiquitous heterotrophic bacteria (SAR11 clades) and cyanobacteria (Synechococcus sp.) displayed population-level shifts in diversity. Samples from higher-salinity conditions (>14 practical salinity units [PSU]) had increased abundances of viruses for picoeukaryotes, i.e., Ostreococcus. These data, combined with host diversity estimates, suggest viral modulation of diversity on the whole-community scale, as well as in specific prokaryotic and eukaryotic lineages. RNA libraries revealed single-stranded DNA (ssDNA) and RNA viral populations throughout the Baltic Sea, with ssDNA phage highly represented in Lake Torneträsk. Further, our data suggest relatively high transcriptional activity of fish viruses within diverse families known to have broad host ranges, such as Nodoviridae (RNA), Iridoviridae (DNA), and predicted zoonotic viruses that can cause ecological and economic damage as well as impact human health. IMPORTANCE Inferred virus-host relationships, community structures of ubiquitous ecologically relevant groups, and identification of transcriptionally active populations have been achieved with our Baltic Sea study. Further, these data, highlighting the transcriptional activity of viruses, represent one of the more powerful uses of omics concerning ecosystem health. The use of omics-related data to assess ecosystem health holds great promise for rapid and relatively inexpensive determination of perturbations and risk, explicitly with regard to viral assemblages, as no single marker gene is suitable for widespread taxonomic coverage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA