Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mov Disord ; 38(10): 1962-1967, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37539721

RESUMEN

BACKGROUND: Magnetic resonance guided focused ultrasound (MRgFUS) is United States Food and Drug Administration approved for the treatment of tremor-dominant Parkinson's disease (TdPD), but only limited studies have been described in practice. OBJECTIVES: To report the largest prospective experience of unilateral MRgFUS thalamotomy for the treatment of medically refractory TdPD. METHODS: Clinical outcomes of 48 patients with medically refractory TdPD who underwent MRgFUS thalamotomy were evaluated. Tremor outcomes were assessed using the Fahn-Tolosa-Marin scale and adverse effects were categorized using a structured questionnaire and clinical exam at 1 month (n = 44), 3 months (n = 34), 1 year (n = 22), 2 years (n = 5), and 3 years (n = 2). Patients underwent magnetic resonance imaging <24 hours post-procedure. RESULTS: Significant tremor control persisted at all follow-ups (P < 0.001). All side effects were mild. At 3 months, these included gait imbalance (38.24%), sensory deficits (26.47%), motor weakness (17.65%), dysgeusia (5.88%), and dysarthria (5.88%), with some persisting at 1 year. CONCLUSIONS: MRgFUS thalamotomy is an effective treatment for sustained tremor control in patients with TdPD. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Temblor Esencial , Enfermedad de Parkinson , Humanos , Temblor/etiología , Temblor/cirugía , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/cirugía , Estudios Prospectivos , Tálamo/cirugía , Resultado del Tratamiento , Imagen por Resonancia Magnética/métodos
2.
Stereotact Funct Neurosurg ; 101(1): 60-67, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36696893

RESUMEN

Magnetic resonance-guided high-intensity focused ultrasound (MRgFUS) is a rapidly developing technique used for tremor relief in tremor-predominant Parkinson's disease (PD) and essential tremor that has demonstrated successful results. Here, we describe the neuropathological findings in a woman who died from a fall 10 days after successful MRgFUS for tremor-predominant PD. Histological analysis demonstrates the characteristic early postoperative MRI findings including 3 distinct zones on T2-weighted imaging: (1) a hypointense core, (2) a hyperintense region with hypointense rim, and (3) a slightly hyperintense, poorly marginated surrounding area. Histopathological analyses also demonstrate the suspected cellular processes composing each of these regions including central hemorrhagic necrosis with surrounding cytotoxic edema and a rim of mostly unaffected vasogenic edema with some reactive and reparative processes. Overall, this case demonstrates the correlation of postoperative imaging findings with the subacute neuropathological findings after MRgFUS for PD.


Asunto(s)
Temblor Esencial , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Femenino , Humanos , Temblor , Resultado del Tratamiento , Tálamo/cirugía , Imagen por Resonancia Magnética/métodos , Temblor Esencial/cirugía , Enfermedad de Parkinson/cirugía
3.
Proc Natl Acad Sci U S A ; 114(48): E10281-E10290, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133392

RESUMEN

Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/terapia , Doxorrubicina/análogos & derivados , Sistemas de Liberación de Medicamentos/métodos , Glioma/terapia , Terapia por Ultrasonido/métodos , Acústica/instrumentación , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Carbocianinas/química , Carbocianinas/farmacocinética , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/instrumentación , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacocinética , Glioma/diagnóstico por imagen , Glioma/metabolismo , Glioma/patología , Hipocampo/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Proteínas Luminiscentes/química , Proteínas Luminiscentes/farmacocinética , Imagen por Resonancia Magnética , Masculino , Microburbujas , Terapia Molecular Dirigida , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología , Ratas , Ratas Sprague-Dawley , Transductores , Ondas Ultrasónicas
5.
Magn Reson Med ; 69(4): 1023-33, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22648783

RESUMEN

We demonstrate a new method of using ultrasound data to achieve prospective motion compensation in MRI, especially for respiratory motion during interventional MRI procedures in moving organs such as the liver. The method relies on fingerprint-like biometrically distinct ultrasound echo patterns produced by different locations in tissue, which are collated with geometrical information from MRI during a training stage to form a mapping table that relates ultrasound measurements to positions. During prospective correction, the system makes frequent ultrasound measurements and uses the map to determine the corresponding position. Results in motorized linear motion phantoms and freely breathing animals indicate that the system performs well. Apparent motion is reduced by up to 97.8%, and motion artifacts are reduced or eliminated in two-dimensional spoiled gradient-echo images. The motion compensation is sufficient to permit MRI thermometry of focused ultrasound heating during respiratory-like motion, with results similar to those obtained in the absence of motion. This new technique may have applications for MRI thermometry and other dynamic imaging in the abdomen during free breathing.


Asunto(s)
Biometría/instrumentación , Aumento de la Imagen/instrumentación , Imagen por Resonancia Magnética/instrumentación , Técnicas de Imagen Sincronizada Respiratorias/instrumentación , Transductores , Ultrasonografía/instrumentación , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Masculino , Conejos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
Bioeng Transl Med ; 8(2): e10408, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925708

RESUMEN

Effective chemotherapy delivery for glioblastoma multiforme (GBM) is limited by drug transport across the blood-brain barrier and poor efficacy of single agents. Polymer-drug conjugates can be used to deliver drug combinations with a ratiometric dosing. However, the behaviors and effectiveness of this system have never been well investigated in GBM models. Here, we report flexible conjugates of hyaluronic acid (HA) with camptothecin (CPT) and doxorubicin (DOX) delivered into the brain using focused ultrasound (FUS). In vitro toxicity assays reveal that DOX-CPT exhibited synergistic action against GBM in a ratio-dependent manner when delivered as HA conjugates. FUS is employed to improve penetration of DOX-HA-CPT conjugates into the brain in vivo in a murine GBM model. Small-angle x-ray scattering characterizations of the conjugates show that the DOX:CPT ratio affects the polymer chain flexibility. Conjugates with the highest flexibility yield the highest efficacy in treating mouse GBM in vivo. Our results demonstrate the association of FUS-enhanced delivery of combination chemotherapy and the drug-ratio-dependent flexibility of the HA conjugates. Drug ratio in the polymer nanocomplex may thus be employed as a key factor to modulate FUS drug delivery efficiency via controlling the polymer flexibility. Our characterizations also highlight the significance of understanding the flexibility of drug carriers in ultrasound-mediated drug delivery systems.

7.
Front Neurol ; 14: 1272425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869137

RESUMEN

Introduction: Magnetic-resonance-guided focused ultrasound (MRgFUS) thalamotomy uses multiple converging high-energy ultrasonic beams to produce thermal lesions in the thalamus. Early postoperative MR imaging demonstrates the location and extent of the lesion, but there is no consensus on the utility or frequency of postoperative imaging. We aimed to evaluate the evolution of MRgFUS lesions and describe the incidence, predictors, and clinical effects of lesion persistence in a large patient cohort. Methods: A total of 215 unilateral MRgFUS thalamotomy procedures for essential tremor (ET) by a single surgeon were retrospectively analyzed. All patients had MR imaging 1 day postoperatively; 106 had imaging at 3 months and 32 had imaging at 1 year. Thin cut (2 mm) axial and coronal T2-weighted MRIs at these timepoints were analyzed visually on a binary scale for lesion presence and when visible, lesion volumes were measured. SWI and DWI sequences were also analyzed when available. Clinical outcomes including tremor scores and side effects were recorded at these same time points. We analyzed if patient characteristics (age, skull density ratio), preoperative tremor score, and sonication parameters influenced lesion evolution and if imaging characteristics correlated with clinical outcomes. Results: Visible lesions were present in all patients 1 day post- MRgFUS and measured 307.4 ± 128.7 mm3. At 3 months, residual lesions (excluding patients where lesions were not visible) were 83.6% smaller and detectable in only 54.7% of patients (n = 58). At 1 year, residual lesions were detected in 50.0% of patients (n = 16) and were 90.7% smaller than 24 h and 46.5% smaller than 3 months. Lesions were more frequently visible on SWI (100%, n = 17), DWI (n = 38, 97.4%) and ADC (n = 36, 92.3%). At 3 months, fewer treatment sonications, higher maximum power, and greater distance between individual sonications led to larger lesion volumes. Volume at 24 h did not predict if a lesion was visible later. Lesion visibility at 3 months predicted sensory side effects but was not correlated with tremor outcomes. Discussion: Overall, lesions are visible on T2-weighted MRI in about half of patients at both 3 months and 1 year post-MRgFUS thalamotomy. Certain sonication parameters significantly predicted persistent volume, but residual lesions did not correlate with tremor outcomes.

8.
J Control Release ; 358: 498-509, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37127076

RESUMEN

The therapeutic potential of many gene therapies is limited by their inability to cross the blood brain barrier (BBB). While intranasal administration of plasmid DNA nanoparticles (NPs) offers a non-invasive approach to bypass the BBB, it is not targeted to disease-relevant brain regions. Here, our goal was to determine whether focused ultrasound (FUS) can enrich intranasal delivery of our plasmid DNA NPs to target deeper brain regions, in this case the regions most affected in Parkinson's disease. Combining FUS with intranasal administration resulted in enhanced delivery of DNA NPs to the rodent brain, by recruitment and transfection of microglia. FUS increased transgene expression by over 3-fold after intranasal administration compared to intravenous administration. Additionally, FUS with intranasal delivery increased transgene expression in the sonicated hemisphere by over 80%, altered cellular transfection patterns at the sonication sites, and improved penetration of plasmid NPs into the brain parenchyma (with a 1-fold and 3-fold increase in proximity of transgene expression to neurons in the forebrain and midbrain respectively, and a 40% increase in proximity of transgene expression to dopaminergic neurons in the substantia nigra). These results provide evidence in support of using FUS to improve transgene expression after intranasal delivery of non-viral gene therapies.


Asunto(s)
Encéfalo , Nanopartículas , Administración Intranasal , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , ADN , Transgenes , Microburbujas , Sistemas de Liberación de Medicamentos/métodos
9.
MAGMA ; 25(1): 5-14, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21800192

RESUMEN

OBJECT: To develop an ultrafast MRI-based temperature monitoring method for application during rapid ultrasound exposures in moving organs. MATERIALS AND METHODS: A slice selective 90° - 180° pair of RF pulses was used to solicit an echo from a column, which was then sampled with a train of gradient echoes. In a gel phantom, phase changes of each echo were compared to standard gradient-echo thermometry, and temperature monitoring was tested during focused ultrasound sonications. Signal-to-noise ratio (SNR) performance was evaluated in vivo in a rabbit brain, and feasibility was tested in a human heart. RESULTS: The correlation between each echo in the acquisition and MRI-based temperature measurements was good (R = 0.98 ± 0.03). A temperature sampling rate of 19 Hz was achieved at 3T in the gel phantom. It was possible to acquire the water frequency in the beating heart muscle with 5-Hz sampling rate during a breath hold. CONCLUSION: Ultrafast thermometry via phase or frequency monitoring along single columns was demonstrated. With a temporal resolution around 50 ms, it may be possible to monitor focal heating produced by short ultrasound pulses.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Animales , Encéfalo/patología , Calibración , Diseño de Equipo , Geles , Corazón/fisiología , Calor , Humanos , Movimiento , Miocardio/patología , Fantasmas de Imagen , Protones , Conejos , Ondas de Radio , Relación Señal-Ruido , Temperatura , Ultrasonido , Agua/química
10.
Epilepsy Curr ; 22(3): 156-160, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36474831

RESUMEN

Patients with drug-resistant epilepsy (DRE) who are not surgical candidates have unacceptably few treatment options. Benefits of implanted electrostimulatory devices are still largely palliative, and many patients are not eligible to receive them. A new form of neuromodulation, low intensity focused ultrasound (LIFUS), is rapidly emerging, and has many potential intracranial applications. LIFUS can noninvasively target tissue with a spatial distribution of highly focused acoustic energy that ensures a therapeutic effect only at the geometric focus of the transducer. A growing literature over the past several decades supports the safety of LIFUS and its ability to noninvasively modulate neural tissue in animals and humans by positioning the beam over various brain regions to target motor, sensory, and visual cortices as well as frontal eye fields and even hippocampus. Several preclinical studies have demonstrated the ability of LIFUS to suppress seizures in epilepsy animal models without damaging tissue. Resection after sonication to the antero-mesial lobe showed no pathologic changes in epilepsy patients, and this is currently being trialed in serial treatments to the hippocampus in DRE. Low intensity focused ultrasound is a promising, novel, incisionless, and radiation-free alternative form of neuromodulation being investigated for epilepsy. If proven safe and effective, it could be used to target lateral cortex as well as deep structures without causing damage, and is being studied extensively to treat a wide variety of neurologic and psychiatric disorders including epilepsy.

11.
Biomolecules ; 12(7)2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35883506

RESUMEN

Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and hyperphosphorylated tau in the brain. Currently, therapeutic agents targeting amyloid appear promising for AD, however, delivery to the CNS is limited due to the blood-brain-barrier (BBB). Focused ultrasound (FUS) is a method to induce a temporary opening of the BBB to enhance the delivery of therapeutic agents to the CNS. In this study, we evaluated the acute effects of FUS and whether the use of FUS-induced BBB opening enhances the delivery of 07/2a mAb, an anti-pyroglutamate-3 Aß antibody, in aged 24 mo-old APP/PS1dE9 transgenic mice. FUS was performed either unilaterally or bilaterally with mAb infusion and the short-term effect was analyzed 4 h and 72 h post-treatment. Quantitative analysis by ELISA showed a 5-6-fold increase in 07/2a mAb levels in the brain at both time points and an increased brain-to-blood ratio of the antibody. Immunohistochemistry demonstrated an increase in IgG2a mAb detection particularly in the cortex, enhanced immunoreactivity of resident Iba1+ and phagocytic CD68+ microglial cells, and a transient increase in the infiltration of Ly6G+ immune cells. Cerebral microbleeds were not altered in the unilaterally or bilaterally sonicated hemispheres. Overall, this study shows the potential of FUS therapy for the enhanced delivery of CNS therapeutics.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Encéfalo/fisiología , Inmunidad , Inmunoglobulina G/uso terapéutico , Ratones , Placa Amiloide
12.
Neuroimage ; 56(3): 1267-75, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21354315

RESUMEN

We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders.


Asunto(s)
Encéfalo/fisiología , Encéfalo/efectos de la radiación , Ultrasonido , Animales , Barrera Hematoencefálica , Temperatura Corporal , Mapeo Encefálico , Fenómenos Electrofisiológicos , Imagen por Resonancia Magnética , Masculino , Corteza Motora/fisiología , Corteza Motora/efectos de la radiación , Conejos , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/efectos de la radiación , Transductores , Corteza Visual/fisiología , Corteza Visual/efectos de la radiación
13.
Radiology ; 259(1): 39-56, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21436096

RESUMEN

Focused ultrasound surgery (FUS) is a noninvasive image-guided therapy and an alternative to surgical interventions. It presents an opportunity to revolutionize cancer therapy and to affect or change drug delivery of therapeutic agents in new focally targeted ways. In this article the background, principles, technical devices, and clinical cancer applications of image-guided FUS are reviewed.


Asunto(s)
Terapia por Ultrasonido/métodos , Terapia por Ultrasonido/tendencias , Ultrasonografía Intervencional/métodos , Ultrasonografía Intervencional/tendencias , Humanos
14.
Magn Reson Med ; 66(1): 112-22, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21337421

RESUMEN

MR thermometry can be a very challenging application, as good resolution may be needed along spatial, temporal, and temperature axes. Given that the heated foci produced during thermal therapies are typically much smaller than the anatomy being imaged, much of the imaged field-of-view is not actually being heated and may not require temperature monitoring. In this work, many-fold improvements were obtained in terms of temporal resolution and/or 3D spatial coverage by sacrificing some of the in-plane spatial coverage. To do so, three fast-imaging approaches were jointly implemented with a spoiled gradient echo sequence: (1) two-dimensional spatially selective RF excitation, (2) unaliasing by Fourier encoding the overlaps using the temporal dimension (UNFOLD), and (3) parallel imaging. The sequence was tested during experiments with focused ultrasound heating in ex vivo tissue and a tissue-mimicking phantom. Temperature maps were estimated from phase-difference images based on the water proton resonance frequency shift. Results were compared to those obtained from a spoiled gradient echo sequence sequence, using a t-test. Temporal resolution was increased by 24-fold, with temperature uncertainty less than 1°C, while maintaining accurate temperature measurements (mean difference between measurements, as observed in gel = 0.1°C ± 0.6; R = 0.98; P > 0.05).


Asunto(s)
Imagen por Resonancia Magnética , Músculos/diagnóstico por imagen , Termómetros , Animales , Bovinos , Simulación por Computador , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Sus scrofa , Factores de Tiempo , Ultrasonografía
15.
J Control Release ; 336: 443-456, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34186148

RESUMEN

Pyroglutamate-3 amyloid-ß (pGlu3 Aß) is an N-terminally modified, pathogenic form of amyloid-ß that is present in cerebral amyloid plaques and vascular deposits. Here, we used focused ultrasound (FUS) with microbubbles to enhance the intravenous delivery of an Fc-competent anti-pGlu3 Aß monoclonal antibody, 07/2a mAb, across the blood brain barrier (BBB) in an attempt to improve Aß removal and memory in aged APP/PS1dE9 mice, an Alzheimer's disease (AD)-like model of amyloidogenesis. First, we demonstrated that bilateral hippocampal FUS-BBB disruption (FUS-BBBD) led to a 5.5-fold increase of 07/2a mAb delivery to the brains compared to non-sonicated mice 72 h following a single treatment. Then, we determined that three weekly treatments with 07/2a mAb alone improved spatial learning and memory in aged, plaque-rich APP/PS1dE9 mice, and that this improvement occurred faster and in a higher percentage of animals when combined with FUS-BBBD. Mice given the combination treatment had reduced hippocampal plaque burden compared to PBS-treated controls. Furthermore, synaptic protein levels were higher in hippocampal synaptosomes from mice given the combination treatment compared to sham controls, and there were more CA3 synaptic puncta labeled in the APP/PS1dE9 mice given the combination treatment compared to those given mAb alone. Plaque-associated microglia were present in the hippocampi of APP/PS1dE9 mice treated with 07/2a mAb with and without FUS-BBBD. However, we discovered that plaque-associated Ly6G+ monocytes were only present in the hippocampi of APP/PS1dE9 mice that were given FUS-BBBD alone or even more so, the combination treatment. Lastly, FUS-BBBD did not increase the incidence of microhemorrhage in mice with or without 07/2a mAb treatment. Our findings suggest that FUS is a useful tool to enhance delivery and efficacy of an anti-pGlu3 Aß mAb for immunotherapy either via an additive effect or an independent mechanism. We revealed a potential novel mechanism wherein the combination of 07/2a mAb with FUS-BBBD led to greater monocyte infiltration and recruitment to plaques in this AD-like model. Overall, these effects resulted in greater plaque removal, sparing of synapses and improved cognitive function without causing overt damage, suggesting the possibility of FUS-BBBD as a noninvasive method to increase the therapeutic efficacy of drugs or biologics in AD patients.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Placa Amiloide , Ácido Pirrolidona Carboxílico
16.
Ultrasound Med Biol ; 46(5): 1270-1274, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32088061

RESUMEN

Pulsed low-intensity focused ultrasound (PLIFUS) has shown promise in inducing neuromodulation in several animal and human studies. Therefore, it is of clinical interest to develop experimental platforms to test repetitive PLIFUS as a therapeutic modality in humans with neurologic disorders. In the study described here, our aim was to develop a laboratory-built experimental device platform intended to deliver repetitive PLIFUS across the hippocampus in seizure onset zones of patients with drug-resistant temporal lobe epilepsy. The system uses neuronavigation targeting over multiple therapeutic sessions. PLIFUS (548 kHz) was emitted across multiple hippocampal targets in a human subject with temporal lobe epilepsy using a mechanically steered piezoelectric transducer. Stimulation was delivered up to 2.25 W/cm2 spatial peak temporal average intensity (free-field equivalent), with 36%-50% duty cycle, 500-ms sonications and 7-s inter-stimulation intervals lasting 140 s per target and repeated for multiple sessions. A first-in-human PLIFUS course of treatment was successfully delivered using the device platform with no adverse events.


Asunto(s)
Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/terapia , Hipocampo/diagnóstico por imagen , Terapia por Ultrasonido/métodos , Adulto , Animales , Femenino , Humanos , Imagen por Resonancia Magnética , Neuronavegación/métodos , Terapia por Ultrasonido/efectos adversos
17.
Drug Deliv Transl Res ; 10(5): 1507-1516, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32307675

RESUMEN

The effect of local anesthetics, particularly those which are hydrophilic, such as tetrodotoxin, is impeded by tissue barriers that restrict access to individual nerve cells. Methods of enhancing penetration of tetrodotoxin into nerve include co-administration with chemical permeation enhancers, nanoencapsulation, and insonation with very low acoustic intensity ultrasound and microbubbles. In this study, we examined the effect of acoustic intensity on nerve block by tetrodotoxin and compared it to the effect on nerve block by bupivacaine, a more hydrophobic local anesthetic. Anesthetics were applied in peripheral nerve blockade in adult Sprague-Dawley rats. Insonation with 1-MHz ultrasound at acoustic intensity greater than 0.5 W/cm2 improved nerve block effectiveness, increased nerve block reliability, and prolonged both sensory and motor nerve blockade mediated by the hydrophilic ultra-potent local anesthetic, tetrodotoxin. These effects were not enhanced by microbubbles. There was minimal or no tissue injury from ultrasound treatment. Insonation did not enhance nerve block from bupivacaine. Using an in vivo model system of local anesthetic delivery, we studied the effect of acoustic intensity on insonation-mediated drug delivery of local anesthetics to the peripheral nerve. We found that insonation alone (at intensities greater than 0.5 W/cm2) enhanced nerve blockade mediated by the hydrophilic ultra-potent local anesthetic, tetrodotoxin. Graphical abstract.


Asunto(s)
Anestesia Local , Bupivacaína , Bloqueo Nervioso/métodos , Ultrasonido , Anestésicos Locales/administración & dosificación , Animales , Bupivacaína/administración & dosificación , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
18.
Radiology ; 253(3): 697-705, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19703861

RESUMEN

PURPOSE: To determine if focused ultrasonography (US) combined with a diagnostic microbubble-based US contrast agent can be used to modulate glomerular ultrafiltration and size selectivity. MATERIALS AND METHODS: The experiments were approved by the animal care committee. The left kidney of 17 healthy rabbits was sonicated by using a 260-kHz focused US transducer in the presence of a microbubble-based US contrast agent. The right kidney served as the control. Three acoustic power levels were applied: 0.4 W (six rabbits), 0.9 W (six rabbits), and 1.7 W (five rabbits). Three rabbits were not treated with focused US and served as control animals. The authors evaluated changes in glomerular size selectivity by measuring the clearance rates of 3000- and 70,000-Da fluorescence-neutral dextrans. The creatinine clearance was calculated for estimation of the glomerular filtration rate. The urinary protein-creatinine ratio was monitored during the experiments. The authors assessed tubular function by evaluating the fractional sodium excretion, tubular reabsorption of phosphate, and gamma-glutamyltransferase-creatinine ratio. Whole-kidney histologic analysis was performed. For each measurement, the values obtained before and after sonication were compared by using the paired t test. RESULTS: Significant (P < .05) increases in the relative (ratio of treated kidney value/nontreated kidney value) clearance of small- and large-molecule agents and the urine flow rates that resulted from the focused US treatments were observed. Overall, 1.23-, 1.23-, 1.61-, and 1.47-fold enhancement of creatinine clearance, 3000-Da dextran clearance, 70 000-Da dextran clearance, and urine flow rate, respectively, were observed. Focal tubular hemorrhage and transient functional tubular alterations were observed at only the highest (1.7-W) acoustic power level tested. CONCLUSION: Glomerular ultrafiltration and size selectivity can be temporarily modified with simultaneous application of US and microbubbles. This method could offer new opportunities for treatment of renal disease.


Asunto(s)
Medios de Contraste/farmacocinética , Fluorocarburos/farmacocinética , Tasa de Filtración Glomerular/efectos de la radiación , Riñón/efectos de la radiación , Ultrasonido , Análisis de Varianza , Animales , Medios de Contraste/administración & dosificación , Creatinina/orina , Dextranos/orina , Fluorocarburos/administración & dosificación , Tasa de Filtración Glomerular/efectos de los fármacos , Riñón/efectos de los fármacos , Masculino , Microburbujas , Conejos , Estadísticas no Paramétricas , Micción
19.
Ultrasound Med Biol ; 45(7): 1850-1856, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31060860

RESUMEN

Focused ultrasound single-element piezoelectric transducers constitute a promising method to deliver ultrasound to the brain in low-intensity applications, but are subject to defocusing and high attenuation because of transmission through the skull. Here, a novel virtual brain projection method is used to superimpose a magnetic resonance image of the brain in ex vivo human skulls to provide targets during trans-skull focused ultrasound single-element piezoelectric transducer pressure field mapping. Positions of the transducer, skull and hydrophone are tracked in real time using a stereoscopic navigation camera and 3-D Slicer software. Virtual targets of the left dorsolateral prefrontal cortex, left hippocampus and cerebellar vermis were chosen to illustrate the method's flexibility in evaluating focal-zone beam distortion and attenuation. The regions are of interest as non-invasive brain stimulation targets in the treatment of neuropsychiatric disorders via repeated ultrasound exposure. The technical approach can facilitate the assessment of transcranial ultrasound device operator positioning reliability, intracranial beam behavior and computational model validation.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Simulación por Computador , Imagenología Tridimensional/métodos , Ultrasonografía Doppler Transcraneal/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Transductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA