Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Brain Res ; 240(7-8): 1957-1966, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35562536

RESUMEN

Essential tremor (ET) is a movement disorder characterized primarily by action tremor which affects the regulation of movements. Disruptions in cerebello-thalamocortical networks could interfere with cognitive control over actions in ET, for example, the ability to suppress a strong automatic impulse over a more appropriate action (conflict control). The current study investigated whether ET impacts conflict control proficiency. Forty-one ET patients and 29 age-matched healthy controls (HCs) performed a conflict control task (Simon task). Participants were instructed to give a left or right response to a spatially lateralized arrow (direction of the arrow). When the action signaled by the spatial location and direction of the arrow were non-corresponding (induced conflict), the inappropriate action impulse required suppression. Overall, ET patients responded slower and less accurately compared to HCs. ET patients were especially less accurate on non-corresponding conflict (Nc) versus corresponding (Cs) trials. A focused analysis on fast impulsive response rates (based on the accuracy rate at the fastest reaction times on Nc trials) showed that ET patients made more fast errors compared to HCs. Results suggest impaired conflict control in ET compared to HCs. The increased impulsive errors seen in the ET population may be a symptom of deficiencies in the cerebello-thalamocortical networks, or, be caused by indirect effects on the cortico-striatal pathways. Future studies into the functional networks impacted by ET (cortico-striatal and cerebello-thalamocortical pathways) could advance our understanding of inhibitory control in general and the cognitive deficits in ET.


Asunto(s)
Temblor Esencial , Cerebelo , Humanos , Conducta Impulsiva/fisiología , Tiempo de Reacción/fisiología
2.
Clin Neurophysiol ; 144: 50-58, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242948

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) is an effective treatment to improve motor symptoms in Parkinson's disease (PD). The Globus Pallidus (GPi) and the Subthalamic Nucleus (STN) are the most targeted brain regions for stimulation and produce similar improvements in PD motor symptoms. However, our understanding of stimulation effects across targets on inhibitory action control processes is limited. We compared the effects of STN (n = 20) and GPi (n = 13) DBS on inhibitory control in PD patients. METHODS: We recruited PD patients undergoing DBS at the Vanderbilt Movement Disorders Clinic and measured their performance on an inhibitory action control task (Simon task) before surgery (optimally treated medication state) and after surgery in their optimally treated state (medication plus their DBS device turned on). RESULTS: DBS to both STN and GPi targets induced an increase in fast impulsive errors while simultaneously producing more proficient reactive suppression of interference from action impulses. CONCLUSIONS: Stimulation in GPi produced similar effects as STN DBS, indicating that stimulation to either target increases the initial susceptibility to act on strong action impulses while concomitantly improving the ability to suppress ongoing interference from activated impulses. SIGNIFICANCE: Action impulse control processes are similarly impacted by stimulating dissociable nodes in frontal-basal ganglia circuitry.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Globo Pálido/fisiología , Enfermedad de Parkinson/terapia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA