Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 284(44): 30498-507, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19726686

RESUMEN

Kelch-related protein 1 (Krp1) is up-regulated in oncogene-transformed fibroblasts. The Kelch repeats interact directly with the actin-binding protein Lasp-1 in membrane ruffles at the tips of pseudopodia, where both proteins are necessary for pseudopodial elongation. Herein, we investigate the molecular basis for this interaction. Probing an array of overlapping decapeptides of Rattus norvegicus (Rat) Krp1 with recombinant Lasp-1 revealed two binding sites; one ((317)YDPMENECYLT(327)) precedes the first of five Kelch repeats, and the other ((563)TEVNDIWKYEDD(574)) is in the last of the five Kelch repeats. Mutational analysis established that both binding sites are necessary for Krp1-Lasp-1 interaction in vitro and function in vivo. The crystal structure of the C-terminal domain of rat Krp1 (amino acids 289-606) reveals that both binding sites are brought into close proximity by the formation of a novel six-bladed beta-propeller, where the first blade is not formed by a Kelch repeat.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Motoras Moleculares/química , Proteínas del Tejido Nervioso/metabolismo , Seudópodos/ultraestructura , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/fisiología , Cristalografía por Rayos X , Proteínas del Citoesqueleto , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/fisiología , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/fisiología , Unión Proteica , Conformación Proteica , Ratas , Secuencias Repetitivas de Ácidos Nucleicos
2.
Curr Opin Genet Dev ; 16(1): 65-70, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16377173

RESUMEN

The invasive and metastatic behaviour of tumours impacts crucially on the clinical management of cancer. Accordingly, it is important to understand the regulation of tumour cell invasiveness. Genetic analysis of worms, Drosophila and mice has provided evidence that invasion is a genetic pathway regulated by transcription factors that are often implicated in tumour cell invasion. Recent evidence has revealed much concerning the role of one particular transcription factor, AP1, which is involved in the regulation of a multigenic invasion program in which upregulated and downregulated genes function as invasion effectors and suppressors, respectively. Differentially expressed genes cooperatively enhance pseudopod elongation during the mesenchymal mode of invasion by altering the function, localisation and activity of non-differentially expressed proteins.


Asunto(s)
Invasividad Neoplásica/genética , Factores de Transcripción/genética , Animales , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes fos , Humanos , Oncogenes , Factor de Transcripción AP-1/genética
3.
Oncogene ; 23(31): 5284-92, 2004 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-15107823

RESUMEN

Transformation of fibroblasts with the v-fos oncogene produces a highly invasive phenotype that is mediated by changes in gene expression. Inhibition of histone deacetylase (HDAC) activity with trichostatin A (TSA) or valproic acid (VPA) at concentrations that do not affect morphology, motility, chemotaxis or proliferation, strongly inhibits invasion and results in the re-expression of a significant proportion of those genes that are downregulated in the v-Fos-transformed cells. Independent expression of three of these re-expressed genes, (Ring1 and YY1 binding protein (RYBP); protocadherin gamma subfamily C,3 (PCDHGC3); and signal transducer and activator of transcription 6 (STAT6)) in Fos-transformed cells, has no effect on morphology, motility, chemotaxis or proliferation, but strongly inhibits invasion. Therefore, we conclude that the ability of v-Fos-transformed cells to invade is dependent upon repression of gene expression through either direct or indirect HDAC activity.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Histona Desacetilasas/metabolismo , Proteínas Oncogénicas v-fos/metabolismo , Actinas/metabolismo , Animales , Northern Blotting , Western Blotting , Proteínas Relacionadas con las Cadherinas , Cadherinas/metabolismo , División Celular , Línea Celular , Línea Celular Transformada , Movimiento Celular , Transformación Celular Neoplásica , Quimiotaxis , Clonación Molecular , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Ácidos Hidroxámicos/farmacología , Microscopía Confocal , Microscopía de Contraste de Fase , Invasividad Neoplásica , Fenotipo , ARN/metabolismo , Ratas , Proteínas Represoras/biosíntesis , Factor de Transcripción STAT6 , Transactivadores/metabolismo , Transfección , Ácido Valproico/farmacología
4.
PLoS One ; 8(1): e53982, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23382862

RESUMEN

Expression of the Rac-guanine nucleotide exchange factor (RacGEF), P-Rex1 is a key determinant of progression to metastasis in a number of human cancers. In accordance with this proposed role in cancer cell invasion and metastasis, we find that ectopic expression of P-Rex1 in an immortalised human fibroblast cell line is sufficient to drive multiple migratory and invasive phenotypes. The invasive phenotype is greatly enhanced by the presence of a gradient of serum or platelet-derived growth factor, and is dependent upon the expression of functional PDGF receptor ß. Consistently, the invasiveness of WM852 melanoma cells, which endogenously express P-Rex1 and PDGFRß, is opposed by siRNA of either of these proteins. Furthermore, the current model of P-Rex1 activation is advanced through demonstration of P-Rex1 and PDGFRß as components of the same macromolecular complex. These data suggest that P-Rex1 has an influence on physiological migratory processes, such as invasion of cancer cells, both through effects upon classical Rac1-driven motility and a novel association with RTK signalling complexes.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Melanoma , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Microambiente Tumoral/genética , Línea Celular Tumoral , Movimiento Celular/genética , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Sustancias Macromoleculares/metabolismo , Melanoma/metabolismo , Melanoma/patología , Invasividad Neoplásica/genética , Metástasis de la Neoplasia , ARN Interferente Pequeño , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética
5.
Cancer Res ; 73(15): 4674-86, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23749641

RESUMEN

Cancer invasion and metastasis occur in a complex three-dimensional (3D) environment, with reciprocal feedback from the surrounding host tissue and vasculature-governing behavior. In this study, we used a novel intravital method that revealed spatiotemporal regulation of Src activity in response to the anti-invasive Src inhibitor dasatinib. A fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) Src biosensor was used to monitor drug-targeting efficacy in a transgenic p53-mutant mouse model of pancreatic cancer. In contrast to conventional techniques, FLIM-FRET analysis allowed for accurate, time-dependent, live monitoring of drug efficacy and clearance in live tumors. In 3D organotypic cultures, we showed that a spatially distinct gradient of Src activity exists within invading tumor cells, governed by the depth of penetration into complex matrices. In parallel, this gradient was also found to exist within live tumors, where Src activity is enhanced at the invasive border relative to the tumor cortex. Upon treatment with dasatinib, we observed a switch in activity at the invasive borders, correlating with impaired metastatic capacity in vivo. Src regulation was governed by the proximity of cells to the host vasculature, as cells distal to the vasculature were regulated differentially in response to drug treatment compared with cells proximal to the vasculature. Overall, our results in live tumors revealed that a threshold of drug penetrance exists in vivo and that this can be used to map areas of poor drug-targeting efficiency within specific tumor microenvironments. We propose that using FLIM-FRET in this capacity could provide a useful preclinical tool in animal models before clinical translation.


Asunto(s)
Antineoplásicos/farmacología , Transferencia Resonante de Energía de Fluorescencia/métodos , Imagenología Tridimensional/métodos , Neoplasias Pancreáticas/metabolismo , Pirimidinas/farmacología , Tiazoles/farmacología , Familia-src Quinasas/metabolismo , Animales , Técnicas Biosensibles/métodos , Células Cultivadas , Dasatinib , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA