Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(47): e2300308120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37976261

RESUMEN

Spinal muscular atrophy (SMA), the top genetic cause of infant mortality, is characterized by motor neuron degeneration. Mechanisms underlying SMA pathogenesis remain largely unknown. Here, we report that the activity of cyclin-dependent kinase 5 (Cdk5) and the conversion of its activating subunit p35 to the more potent activator p25 are significantly up-regulated in mouse models and human induced pluripotent stem cell (iPSC) models of SMA. The increase of Cdk5 activity occurs before the onset of SMA phenotypes, suggesting that it may be an initiator of the disease. Importantly, aberrant Cdk5 activation causes mitochondrial defects and motor neuron degeneration, as the genetic knockout of p35 in an SMA mouse model rescues mitochondrial transport and fragmentation defects, and alleviates SMA phenotypes including motor neuron hyperexcitability, loss of excitatory synapses, neuromuscular junction denervation, and motor neuron degeneration. Inhibition of the Cdk5 signaling pathway reduces the degeneration of motor neurons derived from SMA mice and human SMA iPSCs. Altogether, our studies reveal a critical role for the aberrant activation of Cdk5 in SMA pathogenesis and suggest a potential target for therapeutic intervention.


Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia Muscular Espinal , Animales , Humanos , Ratones , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Degeneración Nerviosa/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
2.
Glia ; 61(9): 1418-1428, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23839956

RESUMEN

Spinal muscular atrophy (SMA) is a genetic disorder caused by the deletion of the survival motor neuron 1 (SMN1) gene that leads to loss of motor neurons in the spinal cord. Although motor neurons are selectively lost during SMA pathology, selective replacement of SMN in motor neurons does not lead to full rescue in mouse models. Due to the ubiquitous expression of SMN, it is likely that other cell types besides motor neurons are affected by its disruption and therefore may contribute to disease pathology. Here we show that astrocytes in SMAΔ7 mouse spinal cord and from SMA-induced pluripotent stem cells exhibit morphological and cellular changes indicative of activation before overt motor neuron loss. Furthermore, our in vitro studies show mis-regulation of basal calcium and decreased response to adenosine triphosphate stimulation indicating abnormal astrocyte function. Together, for the first time, these data show early disruptions in astrocytes that may contribute to SMA disease pathology.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Atrofia Muscular Espinal/patología , Médula Espinal/citología , Adenosina Trifosfato/farmacología , Factores de Edad , Aldehído Deshidrogenasa/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Línea Celular Transformada , Colina O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/genética , Mutación/genética , Nestina/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Células Madre Pluripotentes/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Proteínas S100/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
3.
Proc Natl Acad Sci U S A ; 105(40): 15317-22, 2008 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-18824697

RESUMEN

We identified a functional domain (XlePABP2-TRP) of Xenopus laevis embryonic type II poly(A)-binding protein (XlePABP2). The NMR structure of XlePABP2-TRP revealed that the protein is a homodimer formed by the antiparallel association of beta-strands from the single RNA recognition motif (RRM) domain of each subunit. In each subunit of the homodimer, the canonical RNA recognition site is occluded by a polyproline motif. Upon poly(A) binding, XlePABP2-TRP undergoes a dimer-monomer transition that removes the polyproline motif from the RNA recognition site and allows it to be replaced by the adenosine nucleotides of poly(A). Our results provide high-resolution structural information concerning type II PABPs and an example of a single RRM domain protein that transitions from a homodimer to a monomer upon RNA binding. These findings advance our understanding of RRM domain regulation, poly(A) recognition, and are relevant to understanding how type II PABPs function in mRNA processing and human disease.


Asunto(s)
Proteína II de Unión a Poli(A)/química , Proteína II de Unión a Poli(A)/metabolismo , ARN/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Animales , Sitios de Unión , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Poli A/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , ARN/química , Relación Estructura-Actividad , Xenopus/metabolismo
4.
Antiviral Res ; 129: 67-73, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26875788

RESUMEN

Human cytomegalovirus (HCMV) is the leading cause of congenital infections. Symptomatic newborns present with a range of sequelae including disorders of the CNS such as visual impairment, microcephaly, mental retardation and hearing loss. HCMV congenital infection causes gross changes in brain morphology and disturbances in glial and neuronal distribution, number and migration. In these studies, we have evaluated the effectiveness of the antiviral maribavir in inhibiting HCMV infections of ES cell-derived neuronal progenitor cells (NPC). We used EZ-spheres generated from H9 ES cells which are pre-rosette NPCs that retain long-term potential to differentiate into diverse central and peripheral neural lineages following directed differentiation. Our results demonstrate that the maribavir disrupts HCMV replication and viral yield in undifferentiated EZ-sphere-derived NPCs. In addition, we observed that maribavir limits HCMV replication and reduces the percentage of infected cells during differentiation of NPCs. Finally, early steps in differentiation are maintained during infection by treating with maribavir, likely an indirect effect resulting from decreased viral spread. Future studies of NPC proliferation and differentiation during infection treated with maribavir could provide the impetus for studying maribavir as an antiviral agent for congenital HCMV disease.


Asunto(s)
Antivirales/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/virología , Neurogénesis/efectos de los fármacos , Bencimidazoles/farmacología , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/virología , Humanos , Células-Madre Neurales/fisiología , Neuronas/citología , Ribonucleósidos/farmacología , Replicación Viral/efectos de los fármacos
5.
J Cardiovasc Pharmacol Ther ; 21(6): 549-562, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26940570

RESUMEN

BACKGROUND: Dystrophin-deficient cardiomyopathy is a growing clinical problem without targeted treatments. We investigated whether nicorandil promotes cardioprotection in human dystrophin-deficient induced pluripotent stem cell (iPSC)-derived cardiomyocytes and the muscular dystrophy mdx mouse heart. METHODS AND RESULTS: Dystrophin-deficient iPSC-derived cardiomyocytes had decreased levels of endothelial nitric oxide synthase and neuronal nitric oxide synthase. The dystrophin-deficient cardiomyocytes had increased cell injury and death after 2 hours of stress and recovery. This was associated with increased levels of reactive oxygen species and dissipation of the mitochondrial membrane potential. Nicorandil pretreatment was able to abolish these stress-induced changes through a mechanism that involved the nitric oxide-cyclic guanosine monophosphate pathway and mitochondrial adenosine triphosphate-sensitive potassium channels. The increased reactive oxygen species levels in the dystrophin-deficient cardiomyocytes were associated with diminished expression of select antioxidant genes and increased activity of xanthine oxidase. Furthermore, nicorandil was found to improve the restoration of cardiac function after ischemia and reperfusion in the isolated mdx mouse heart. CONCLUSION: Nicorandil protects against stress-induced cell death in dystrophin-deficient cardiomyocytes and preserves cardiac function in the mdx mouse heart subjected to ischemia and reperfusion injury. This suggests a potential therapeutic role for nicorandil in dystrophin-deficient cardiomyopathy.


Asunto(s)
Cardiomiopatías/prevención & control , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Canales KATP/agonistas , Distrofia Muscular Animal/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Nicorandil/farmacología , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Canales KATP/metabolismo , Masculino , Ratones Endogámicos mdx , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Nicorandil/metabolismo , Donantes de Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Recuperación de la Función , Transducción de Señal/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Xantina Oxidasa/metabolismo
6.
Adv Drug Deliv Rev ; 69-70: 170-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24309014

RESUMEN

In order for the pharmaceutical industry to maintain a constant flow of novel drugs and therapeutics into the clinic, compounds must be thoroughly validated for safety and efficacy in multiple biological and biochemical systems. Pluripotent stem cells, because of their ability to develop into any cell type in the body and recapitulate human disease, may be an important cellular system to add to the drug development repertoire. This review will discuss some of the benefits of using pluripotent stem cells for drug discovery and safety studies as well as some of the recent applications of stem cells in drug screening studies. We will also address some of the hurdles that need to be overcome in order to make stem cell-based approaches an efficient and effective tool in the quest to produce clinically successful drug compounds.


Asunto(s)
Descubrimiento de Drogas/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/fisiología , Animales , Ensayos Clínicos como Asunto/métodos , Ensayos Clínicos como Asunto/tendencias , Descubrimiento de Drogas/tendencias , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/tendencias , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/tendencias , Humanos
7.
Stem Cells Transl Med ; 3(5): 564-74, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24657962

RESUMEN

Using stem cells to replace degenerating muscle cells and restore lost skeletal muscle function is an attractive therapeutic strategy for treating neuromuscular diseases. Myogenic progenitors are a valuable cell type for cell-based therapy and also provide a platform for studying normal muscle development and disease mechanisms in vitro. Human pluripotent stem cells represent a valuable source of tissue for generating myogenic progenitors. Here, we present a novel protocol for deriving myogenic progenitors from human embryonic stem (hES) and induced pluripotent stem (iPS) cells using free-floating spherical culture (EZ spheres) in a defined culture medium. hES cell colonies and human iPS cell colonies were expanded in medium supplemented with high concentrations (100 ng/ml) of fibroblast growth factor-2 (FGF-2) and epidermal growth factor in which they formed EZ spheres and were passaged using a mechanical chopping method. We found myogenic progenitors in the spheres after 6 weeks of culture and multinucleated myotubes following sphere dissociation and 2 weeks of terminal differentiation. A high concentration of FGF-2 plays a critical role for myogenic differentiation and is necessary for generating myogenic progenitors from pluripotent cells cultured as EZ spheres. Importantly, EZ sphere culture produced myogenic progenitors from human iPS cells generated from both healthy donors and patients with neuromuscular disorders (including Becker's muscular dystrophy, spinal muscular atrophy, and familial amyotrophic lateral sclerosis). Taken together, this study demonstrates a simple method for generating myogenic cells from pluripotent sources under defined conditions for potential use in disease modeling or cell-based therapies targeting skeletal muscle.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias , Células Madre Pluripotentes Inducidas , Desarrollo de Músculos , Fibras Musculares Esqueléticas , Esferoides Celulares , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Enfermedades Neuromusculares/metabolismo , Enfermedades Neuromusculares/terapia , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Trasplante de Células Madre
8.
Stem Cell Res ; 10(3): 417-427, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23474892

RESUMEN

We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be expanded for long periods using a chopping method that maintained cell-cell contact. Early passage EZ spheres rapidly down-regulated OCT4 and up-regulated SOX2 and nestin expression. They retained the potential to form neural rosettes and consistently differentiated into a range of central and peripheral neural lineages. Thus, they represent a very early neural stem cell with greater differentiation flexibility than other previously described methods. As such, they will be useful for the rapidly expanding field of neurological development and disease modeling, high-content screening, and regenerative therapies based on pluripotent stem cell technology.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Multipotentes/citología , Células-Madre Neurales/citología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/química , Factor de Crecimiento Epidérmico/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina , Células-Madre Neurales/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Factores de Transcripción SOXB1/metabolismo , Regulación hacia Arriba
9.
PLoS One ; 7(6): e39113, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22723941

RESUMEN

Spinal muscular atrophy (SMA) is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC) lines generated from two Type I SMA subjects-one produced with lentiviral constructs and the second using a virus-free plasmid-based approach-recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients.


Asunto(s)
Apoptosis/genética , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Anticuerpos Monoclonales/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores , Caspasa 8/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular , Activación Enzimática , Proteína Ligando Fas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Fenotipo , Receptor fas/antagonistas & inhibidores
10.
Dev Dyn ; 238(6): 1433-43, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19384857

RESUMEN

Phosphorylation is universally used for controlling protein function, but knowledge of the phosphoproteome in vertebrate embryos has been limited. However, recent technical advances make it possible to define an organism's phosphoproteome at a more comprehensive level. Xenopus laevis offers established advantages for analyzing the regulation of protein function by phosphorylation. Functionally unbiased, comprehensive information about the Xenopus phosphoproteome would provide a powerful guide for future studies of phosphorylation in a developmental context. To this end, we performed a phosphoproteomic analysis of Xenopus oocytes, eggs, and embryos using recently developed mass spectrometry methods. We identified 1,441 phosphorylation sites present on 654 different Xenopus proteins, including hundreds of previously unknown phosphorylation sites. This approach identified several phosphorylation sites described in the literature and/or evolutionarily conserved in other organisms, validating the data's quality. These data will serve as a powerful resource for the exploration of phosphorylation and protein function within a developmental context. Developmental Dynamics 238:1433-1443, 2009. (c) 2009 Wiley-Liss, Inc.


Asunto(s)
Fosfoproteínas/análisis , Proteoma/análisis , Xenopus laevis/embriología , Secuencia de Aminoácidos , Animales , Gástrula/metabolismo , Humanos , Espectrometría de Masas/métodos , Ratones , Datos de Secuencia Molecular , Oocitos/metabolismo , Fosforilación , Reproducibilidad de los Resultados , Alineación de Secuencia , Xenopus laevis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA