Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 613(7945): 639-649, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36697862

RESUMEN

Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.


Asunto(s)
Biomasa , Contaminación de ADN , Feto , Microbiota , Animales , Femenino , Humanos , Embarazo , Líquido Amniótico/inmunología , Líquido Amniótico/microbiología , Mamíferos , Microbiota/genética , Placenta/inmunología , Placenta/microbiología , Feto/inmunología , Feto/microbiología , Reproducibilidad de los Resultados
2.
Brief Bioinform ; 17(1): 154-79, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26026159

RESUMEN

Characterizing the errors generated by common high-throughput sequencing platforms and telling true genetic variation from technical artefacts are two interdependent steps, essential to many analyses such as single nucleotide variant calling, haplotype inference, sequence assembly and evolutionary studies. Both random and systematic errors can show a specific occurrence profile for each of the six prominent sequencing platforms surveyed here: 454 pyrosequencing, Complete Genomics DNA nanoball sequencing, Illumina sequencing by synthesis, Ion Torrent semiconductor sequencing, Pacific Biosciences single-molecule real-time sequencing and Oxford Nanopore sequencing. There is a large variety of programs available for error removal in sequencing read data, which differ in the error models and statistical techniques they use, the features of the data they analyse, the parameters they determine from them and the data structures and algorithms they use. We highlight the assumptions they make and for which data types these hold, providing guidance which tools to consider for benchmarking with regard to the data properties. While no benchmarking results are included here, such specific benchmarks would greatly inform tool choices and future software development. The development of stand-alone error correctors, as well as single nucleotide variant and haplotype callers, could also benefit from using more of the knowledge about error profiles and from (re)combining ideas from the existing approaches presented here.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Análisis de Secuencia de ADN/estadística & datos numéricos , Programas Informáticos , Algoritmos , Biología Computacional/métodos , Genoma Humano , Genómica/estadística & datos numéricos , Humanos , Polimorfismo Genético , Alineación de Secuencia/estadística & datos numéricos
3.
Methods Mol Biol ; 2802: 587-609, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38819573

RESUMEN

Comparative analysis of (meta)genomes necessitates aggregation, integration, and synthesis of well-annotated data using standards. The Genomic Standards Consortium (GSC) collaborates with the research community to develop and maintain the Minimum Information about any (x) Sequence (MIxS) reporting standard for genomic data. To facilitate the use of the GSC's MIxS reporting standard, we provide a description of the structure and terminology, how to navigate ontologies for required terms in MIxS, and demonstrate practical usage through a soil metagenome example.


Asunto(s)
Genómica , Metagenoma , Metagenómica , Metagenómica/métodos , Metagenómica/normas , Genómica/métodos , Genómica/normas , Metagenoma/genética , Bases de Datos Genéticas , Microbiología del Suelo
4.
PLoS Comput Biol ; 8(4): e1002492, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22532796

RESUMEN

Distinguishing mutations that determine an organism's phenotype from (near-) neutral 'hitchhikers' is a fundamental challenge in genome research, and is relevant for numerous medical and biotechnological applications. For human influenza viruses, recognizing changes in the antigenic phenotype and a strains' capability to evade pre-existing host immunity is important for the production of efficient vaccines. We have developed a method for inferring 'antigenic trees' for the major viral surface protein hemagglutinin. In the antigenic tree, antigenic weights are assigned to all tree branches, which allows us to resolve the antigenic impact of the associated amino acid changes. Our technique predicted antigenic distances with comparable accuracy to antigenic cartography. Additionally, it identified both known and novel sites, and amino acid changes with antigenic impact in the evolution of influenza A (H3N2) viruses from 1968 to 2003. The technique can also be applied for inference of 'phenotype trees' and genotype-phenotype relationships from other types of pairwise phenotype distances.


Asunto(s)
Antígenos Virales/genética , Mapeo Cromosómico/métodos , Evolución Molecular , Hemaglutininas/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Modelos Genéticos , Simulación por Computador , Genotipo , Fenotipo
5.
Nucleic Acids Res ; 39(1): e4, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20959296

RESUMEN

Phylodynamic techniques combine epidemiological and genetic information to analyze the evolutionary and spatiotemporal dynamics of rapidly evolving pathogens, such as influenza A or human immunodeficiency viruses. We introduce 'allele dynamics plots' (AD plots) as a method for visualizing the evolutionary dynamics of a gene in a population. Using AD plots, we propose how to identify the alleles that are likely to be subject to directional selection. We analyze the method's merits with a detailed study of the evolutionary dynamics of seasonal influenza A viruses. AD plots for the major surface protein of seasonal influenza A (H3N2) and the 2009 swine-origin influenza A (H1N1) viruses show the succession of substitutions that became fixed in the evolution of the two viral populations. They also allow the early identification of those viral strains that later rise to predominance, which is important for the problem of vaccine strain selection. In summary, we describe a technique that reveals the evolutionary dynamics of a rapidly evolving population and allows us to identify alleles and associated genetic changes that might be under directional selection. The method can be applied for the study of influenza A viruses and other rapidly evolving species or viruses.


Asunto(s)
Alelos , Variación Antigénica , Evolución Molecular , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Filogenia , Antígenos Virales/química , Antígenos Virales/genética , Gráficos por Computador , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/clasificación , Funciones de Verosimilitud , Estaciones del Año , Análisis de Secuencia de Proteína
6.
Nat Microbiol ; 8(11): 1960-1970, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783751

RESUMEN

Microbiome data, metadata and analytical workflows have become 'big' in terms of volume and complexity. Although the infrastructure and technologies to share data have been established, the interdisciplinary and multi-omic nature of the field can make resources difficult to identify and use. Following best practices for data deposition requires substantial effort, with sometimes little obvious reward. Gaps remain where microbiome-specific resources for data sharing or reproducibility do not yet exist. We outline available best practices, challenges to their adoption and opportunities in data sharing in microbiome research. We showcase examples of best practices and advocate for their enforcement and incentivization for data sharing. This includes recognition of data curation and sharing endeavours by individuals, institutions, journals and funders. Opportunities for progress include enabling microbiome-specific databases to incorporate future methods for data analysis, integration and reuse.


Asunto(s)
Microbiota , Tecnología , Humanos , Reproducibilidad de los Resultados , Difusión de la Información , Bases de Datos Factuales
7.
Environ Microbiome ; 17(1): 33, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35751093

RESUMEN

BACKGROUND: Tremendous amounts of data generated from microbiome research studies during the last decades require not only standards for sampling and preparation of omics data but also clear concepts of how the metadata is prepared to ensure re-use for integrative and interdisciplinary microbiome analysis. RESULTS: In this Commentary, we present our views on the key issues related to the current system for metadata submission in omics research, and propose the development of a global metadata system. Such a system should be easy to use, clearly structured in a hierarchical way, and should be compatible with all existing microbiome data repositories, following common standards for minimal required information and common ontology. Although minimum metadata requirements are essential for microbiome datasets, the immense technological progress requires a flexible system, which will have to be constantly improved and re-thought. While FAIR principles (Findable, Accessible, Interoperable, and Reusable) are already considered, international legal issues on genetic resource and sequence sharing provided by the Convention on Biological Diversity need more awareness and engagement of the scientific community. CONCLUSIONS: The suggested approach for metadata entries would strongly improve retrieving and re-using data as demonstrated in several representative use cases. These integrative analyses, in turn, would further advance the potential of microbiome research for novel scientific discoveries and the development of microbiome-derived products.

8.
Proc Biol Sci ; 278(1716): 2249-56, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21177678

RESUMEN

Punctuated antigenic change is believed to be a key element in the evolution of influenza A; clusters of antigenically similar strains predominate worldwide for several years until an antigenically distant mutant emerges and instigates a selective sweep. It is thought that a region of East-Southeast Asia with year-round transmission acts as a source of antigenic diversity for influenza A and seasonal epidemics in temperate regions make little contribution to antigenic evolution. We use a mathematical model to examine how different transmission regimes affect the evolutionary dynamics of influenza over the lifespan of an antigenic cluster. Our model indicates that, in non-seasonal regions, mutants that cause significant outbreaks appear before the peak of the wild-type epidemic. A relatively large proportion of these mutants spread globally. In seasonal regions, mutants that cause significant local outbreaks appear each year before the seasonal peak of the wild-type epidemic, but only a small proportion spread globally. The potential for global spread is strongly influenced by the intensity of non-seasonal circulation and coupling between non-seasonal and seasonal regions. Results are similar if mutations are neutral, or confer a weak to moderate antigenic advantage. However, there is a threshold antigenic advantage, depending on the non-seasonal transmission intensity, beyond which mutants can escape herd immunity in the non-seasonal region and there is a global explosion in diversity. We conclude that non-seasonal transmission regions are fundamental to the generation and maintenance of influenza diversity owing to their epidemiology. More extensive sampling of viral diversity in such regions could facilitate earlier identification of antigenically novel strains and extend the critical window for vaccine development.


Asunto(s)
Clima , Evolución Molecular , Variación Genética , Virus de la Influenza A/genética , Gripe Humana/epidemiología , Gripe Humana/transmisión , Modelos Biológicos , Estaciones del Año , Simulación por Computador , Humanos , Mutación/genética
9.
PLoS Pathog ; 5(10): e1000566, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19855818

RESUMEN

Influenza A virus causes annual epidemics and occasional pandemics of short-term respiratory infections associated with considerable morbidity and mortality. The pandemics occur when new human-transmissible viruses that have the major surface protein of influenza A viruses from other host species are introduced into the human population. Between such rare events, the evolution of influenza is shaped by antigenic drift: the accumulation of mutations that result in changes in exposed regions of the viral surface proteins. Antigenic drift makes the virus less susceptible to immediate neutralization by the immune system in individuals who have had a previous influenza infection or vaccination. A biannual reevaluation of the vaccine composition is essential to maintain its effectiveness due to this immune escape. The study of influenza genomes is key to this endeavor, increasing our understanding of antigenic drift and enhancing the accuracy of vaccine strain selection. Recent large-scale genome sequencing and antigenic typing has considerably improved our understanding of influenza evolution: epidemics around the globe are seeded from a reservoir in East-Southeast Asia with year-round prevalence of influenza viruses; antigenically similar strains predominate in epidemics worldwide for several years before being replaced by a new antigenic cluster of strains. Future in-depth studies of the influenza reservoir, along with large-scale data mining of genomic resources and the integration of epidemiological, genomic, and antigenic data, should enhance our understanding of antigenic drift and improve the detection and control of antigenically novel emerging strains.


Asunto(s)
Evolución Molecular , Genómica , Virus de la Influenza A/genética , Gripe Humana/epidemiología , Gripe Humana/virología , Antígenos Virales/genética , Humanos , Virus de la Influenza A/inmunología , Gripe Humana/inmunología
11.
F1000Res ; 10: 80, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35847383

RESUMEN

Next Generation Sequencing technologies significantly impact the field of Antimicrobial Resistance (AMR) detection and monitoring, with immediate uses in diagnosis and risk assessment. For this application and in general, considerable challenges remain in demonstrating sufficient trust to act upon the meaningful information produced from raw data, partly because of the reliance on bioinformatics pipelines, which can produce different results and therefore lead to different interpretations. With the constant evolution of the field, it is difficult to identify, harmonise and recommend specific methods for large-scale implementations over time. In this article, we propose to address this challenge through establishing a transparent, performance-based, evaluation approach to provide flexibility in the bioinformatics tools of choice, while demonstrating proficiency in meeting common performance standards. The approach is two-fold: first, a community-driven effort to establish and maintain "live" (dynamic) benchmarking platforms to provide relevant performance metrics, based on different use-cases, that would evolve together with the AMR field; second, agreed and defined datasets to allow the pipelines' implementation, validation, and quality-control over time. Following previous discussions on the main challenges linked to this approach, we provide concrete recommendations and future steps, related to different aspects of the design of benchmarks, such as the selection and the characteristics of the datasets (quality, choice of pathogens and resistances, etc.), the evaluation criteria of the pipelines, and the way these resources should be deployed in the community.


Asunto(s)
Benchmarking , Secuenciación de Nucleótidos de Alto Rendimiento , Antibacterianos/farmacología , Biología Computacional/métodos , Farmacorresistencia Bacteriana/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
12.
Methods Mol Biol ; 452: 163-77, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18566764

RESUMEN

Gene-finding is concerned with the identification of stretches of DNA in a genomic sequence that encode biologically active products, such as proteins or functional non-coding RNAs. This is usually the first step in the analysis of any novel piece of genomic sequence, which makes it a very important issue, as all downstream analyses depend on the results. This chapter focuses on the biological basis, computational approaches, and corresponding programs that are available for the automated identification of protein-coding genes. for prokaryotic and eukaryotic genomes, as well as the novel, multi-species sequence data originating from environmental community studies, the state of the art in automated gene finding is described.


Asunto(s)
Procesamiento Automatizado de Datos/métodos , Genes , Proteínas/genética , ARN no Traducido/genética , Análisis de Secuencia de ADN/métodos , Células Eucariotas , Células Procariotas
13.
Methods Mol Biol ; 1525: 271-291, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27896725

RESUMEN

Gene finding is the process of identifying genome sequence regions representing stretches of DNA that encode biologically active products, such as proteins or functional noncoding RNAs. As this is usually the first step in the analysis of any novel genomic sequence or resequenced sample of well-known organisms, it is a very important issue, as all downstream analyses depend on the results. This chapter describes the biological basis for gene finding, and the programs and computational approaches that are available for the automated identification of protein-coding genes. For bacterial, archaeal, and eukaryotic genomes, as well as for multi-species sequence data originating from environmental community studies, the state of the art in automated gene finding is described.


Asunto(s)
Biología Computacional/métodos , Algoritmos , Mapeo Cromosómico , Genoma Arqueal/genética , Genoma Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento
15.
PLoS One ; 7(6): e38581, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22745671

RESUMEN

Metagenome sequencing is becoming common and there is an increasing need for easily accessible tools for data analysis. An essential step is the taxonomic classification of sequence fragments. We describe a web server for the taxonomic assignment of metagenome sequences with PhyloPythiaS. PhyloPythiaS is a fast and accurate sequence composition-based classifier that utilizes the hierarchical relationships between clades. Taxonomic assignments with the web server can be made with a generic model, or with sample-specific models that users can specify and create. Several interactive visualization modes and multiple download formats allow quick and convenient analysis and downstream processing of taxonomic assignments. Here, we demonstrate usage of our web server by taxonomic assignment of metagenome samples from an acidophilic biofilm community of an acid mine and of a microbial community from cow rumen.


Asunto(s)
Clasificación/métodos , Internet , Metagenoma/genética , Algoritmos , Animales , Biopelículas , Bovinos , Femenino , Filogenia , Rumen/microbiología
16.
Nat Methods ; 4(1): 63-72, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17179938

RESUMEN

Metagenome studies have retrieved vast amounts of sequence data from a variety of environments leading to new discoveries and insights into the uncultured microbial world. Except for very simple communities, the encountered diversity has made fragment assembly and the subsequent analysis a challenging problem. A taxonomic characterization of metagenomic fragments is required for a deeper understanding of shotgun-sequenced microbial communities, but success has mostly been limited to sequences containing phylogenetic marker genes. Here we present PhyloPythia, a composition-based classifier that combines higher-level generic clades from a set of 340 completed genomes with sample-derived population models. Extensive analyses on synthetic and real metagenome data sets showed that PhyloPythia allows the accurate classification of most sequence fragments across all considered taxonomic ranks, even for unknown organisms. The method requires no more than 100 kb of training sequence for the creation of accurate models of sample-specific populations and can assign fragments >or=1 kb with high specificity.


Asunto(s)
ADN/clasificación , ADN/genética , Genoma , Genómica/métodos , Filogenia , Animales , Archaea/genética , Artrópodos/genética , Ascomicetos/genética , Bacterias/genética , Cordados/genética , ADN/química , Células Eucariotas , Residuos Industriales , Sargassum/microbiología , Validación de Programas de Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA