Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Ecol Appl ; 33(3): e2816, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36752658

RESUMEN

Most research on boreal populations of woodland caribou (Rangifer tarandus caribou) has been conducted in areas of high anthropogenic disturbance. However, a large portion of the species' range overlaps relatively pristine areas primarily affected by natural disturbances, such as wildfire. Climate-driven habitat change is a key concern for the conservation of boreal-dependent species, where management decisions have yet to consider knowledge from multiple ecological domains integrated into a cohesive and spatially explicit forecast of species-specific habitat and demography. We used a novel ecological forecasting framework to provide climate-sensitive projections of habitat and demography for five boreal caribou monitoring areas within the Northwest Territories (NWT), Canada, over 90 years. Importantly, we quantify uncertainty around forecasted mean values. Our results suggest habitat suitability may increase in central and southwest regions of the NWT's Taiga Plains ecozone but decrease in southern and northwestern regions driven by conversion of coniferous to deciduous forests. We do not project that boreal caribou population growth rates will change despite forecasted changes to habitat suitability. Our results emphasize the importance of efforts to protect and restore northern boreal caribou habitat despite climate uncertainty while highlighting expected spatial variations that are important considerations for local people who rely on them. An ability to reproduce previous work, and critical thought when incorporating sources of uncertainty, will be important to refine forecasts, derive management decisions, and improve conservation efficacy for northern species at risk.


Asunto(s)
Reno , Animales , Humanos , Incertidumbre , Conservación de los Recursos Naturales/métodos , Ecosistema , Bosques
2.
Ecol Lett ; 25(6): 1345-1351, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35315961

RESUMEN

Making predictions from ecological models-and comparing them to data-offers a coherent approach to evaluate model quality, regardless of model complexity or modelling paradigm. To date, our ability to use predictions for developing, validating, updating, integrating and applying models across scientific disciplines while influencing management decisions, policies, and the public has been hampered by disparate perspectives on prediction and inadequately integrated approaches. We present an updated foundation for Predictive Ecology based on seven principles applied to ecological modelling: make frequent Predictions, Evaluate models, make models Reusable, Freely accessible and Interoperable, built within Continuous workflows that are routinely Tested (PERFICT). We outline some benefits of working with these principles: accelerating science; linking with data science; and improving science-policy integration.


Asunto(s)
Ecología , Modelos Teóricos
3.
Glob Chang Biol ; 27(17): e13-e14, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34089540

RESUMEN

Climate warming is expected to enhance tree growth at alpine treelines. A higher growth rate is forecasted as temperatures rise and growth becomes less dependent on the temperature rise. Since radial growth is just one component of treeline dynamics those forecasts do not necessarily apply to treeline elevation or latitude; treelines can shift upward or poleward or remain stable.


Asunto(s)
Clima , Árboles , Cambio Climático , Temperatura
4.
Glob Chang Biol ; 27(9): 1879-1889, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33508887

RESUMEN

Climate warming is expected to positively alter upward and poleward treelines which are controlled by low temperature and a short growing season. Despite the importance of treelines as a bioassay of climate change, a global field assessment and posterior forecasting of tree growth at annual scales is lacking. Using annually resolved tree-ring data located across Eurasia and the Americas, we quantified and modeled the relationship between temperature and radial growth at treeline during the 20th century. We then tested whether this temperature-growth association will remain stable during the 21st century using a forward model under two climate scenarios (RCP 4.5 and 8.5). During the 20th century, growth enhancements were common in most sites, and temperature and growth showed positive trends. Interestingly, the relationship between temperature and growth trends was contingent on tree age suggesting biogeographic patterns in treeline growth are contingent on local factors besides climate warming. Simulations forecast temperature-growth decoupling during the 21st century. The growing season at treeline is projected to lengthen and growth rates would increase and become less dependent on temperature rise. These forecasts illustrate how growth may decouple from climate warming in cold regions and near the margins of tree existence. Such projected temperature-growth decoupling could impact ecosystem processes in mountain and polar biomes, with feedbacks on climate warming.


Asunto(s)
Ecosistema , Árboles , Cambio Climático , Frío , Temperatura
5.
J Environ Manage ; 163: 234-45, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26321533

RESUMEN

Protected area networks are the dominant conservation approach that is used worldwide for protecting biodiversity. Conservation planning in managed forests, however, presents challenges when endangered species use old-growth forests targeted by the forest industry for timber supply. In many ecosystems, this challenge is further complicated by the occurrence of natural disturbance events that disrupt forest attributes at multiple scales. Using spatially explicit landscape simulation experiments, we gather insights into how these large scale, multifaceted processes (fire risk, timber harvesting and the amount of protected area) influenced both the persistence of the threatened boreal caribou and the level of timber supply in the boreal forest of eastern Canada. Our result showed that failure to account explicitly and a priori for fire risk in the calculation of timber supply led to an overestimation of timber harvest volume, which in turn led to rates of cumulative disturbances that threatened both the long-term persistence of boreal caribou and the sustainability of the timber supply itself. Salvage logging, however, allowed some compensatory cumulative effects. It minimised the reductions of timber supply within a range of ∼10% while reducing the negative impact of cumulative disturbances caused by fire and logging on caribou. With the global increase of the human footprint on forest ecosystems, our approach and results provide useful tools and insights for managers to resolve what often appear as lose-lose situation between the persistence of species at risk and timber harvest in other forest ecosystems. These tools contribute to bridge the gap between conservation and forest management, two disciplines that remain too often disconnected in practice.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Bosques , Reno , Animales , Biodiversidad , Canadá , Simulación por Computador , Incendios
6.
New Phytol ; 201(2): 403-416, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24102266

RESUMEN

Models describing the biotic drivers that create and maintain biological diversity within trophic levels have focused primarily on negative interactions (i.e. competition), leaving marginal room for positive interactions (i.e. facilitation). We show facilitation to be a ubiquitous driver of biodiversity by first noting that all species use resources and thus change the local biotic or abiotic conditions, altering the available multidimensional niches. This can cause a shift in local species composition, which can cause an increase in beta, and sometimes alpha, diversity. We show that these increases are ubiquitous across ecosystems. These positive effects on diversity occur via a broad host of disparate direct and indirect mechanisms. We identify and unify several of these facilitative mechanisms and discuss why it has been easy to underappreciate the importance of facilitation. We show that net positive effects have a long history of being considered ecologically or evolutionarily unstable, and we present recent evidence of its potential stability. Facilitation goes well beyond the common case of stress amelioration and it probably gains importance as community complexity increases. While biodiversity is, in part, created by species exploiting many niches, many niches are available to exploit only because species create them.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Modelos Biológicos , Facilitación Social , Animales , Evolución Biológica , Ecosistema , Cadena Alimentaria , Dinámica Poblacional , Estrés Fisiológico
7.
Oecologia ; 172(1): 293-305, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23180420

RESUMEN

Animals in fragmented landscapes have a major challenge to move between high-quality habitat patches through lower-quality matrix. Two current mechanistic hypotheses that describe the movement used by animals outside of their preferred patches (e.g., high-quality habitat or home range) are the biased, correlated random walk (BCRW) and the foray loop (FL). There is also a variant of FL with directed movement (FLdm). While these have been most extensively tested on butterflies, they have never been tested simultaneously with data across a whole metapopulation and over multiple generations, two key scales for population dynamics. Using the pattern-oriented approach, we compare support for these competing hypotheses with a spatially explicit individual-based simulation model on an 11-year dataset that follows 12 patches of the federally endangered Fender's blue butterfly (Plebejus icarioides fenderi) in Oregon's Willamette Valley. BCRW and medium-scale FL and FLdm scenarios predicted the annual total metapopulation size for ≥ 9 of 12 patches as well as patch extinctions. The key difference, however, was that the FL scenarios predicted patch colonizations and persistence poorly, failing to adequately capture movement dynamics; BCRW and one FLdm scenario predicted the observed patch colonization and persistence with reasonable probabilities. This one FLdm scenario, however, had larger prediction intervals. BCRW, the biologically simplest and thus most parsimonious movement hypothesis, performed consistently well across all nine different tests, resulting in the highest quality metapopulation predictions for butterfly conservation.


Asunto(s)
Distribución Animal , Mariposas Diurnas/fisiología , Modelos Teóricos , Animales , Conservación de los Recursos Naturales , Ecosistema , Especies en Peligro de Extinción , Densidad de Población , Dinámica Poblacional
8.
New Phytol ; 196(1): 189-199, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22889129

RESUMEN

• In masting trees, synchronized, heavy reproductive events are thought to deplete stored resources and to impose a replenishment period before subsequent masting. However, direct evidence of resource depletion in wild, masting trees is very rare. Here, we examined the timing and magnitude (local vs individual-level) of stored nutrient depletion after a heavy mast event in Pinus albicaulis. • In 2005, the mast year, we compared seasonal changes in leaf and sapwood nitrogen (N) and phosphorus (P) concentrations and leaf photosynthetic rates in cone-bearing branches, branches that never produced cones, and branches with experimentally removed cones. We also compared nutrient concentrations in cone branches and branches that had never had cones between 2005 and 2006, and measured tree ring width and new shoot growth during 2005. • During the mast year, N or P depletion occurred only in tissue fractions of reproductive branches, where photosynthetic rates were reduced. However, by the end of the following year, nutrients were depleted in all branches, indicating individual-level resource depletion. New shoot and radial growth were not affected by masting. • We provide direct evidence that mast events in wild trees deplete stored nutrients. Our results highlight the importance of evaluating reproductive costs over time and at the individual level.


Asunto(s)
Nitrógeno/deficiencia , Fósforo/deficiencia , Pinus/fisiología , Corteza de la Planta/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Fotosíntesis , Pinus/anatomía & histología , Pinus/crecimiento & desarrollo , Pinus/metabolismo , Corteza de la Planta/anatomía & histología , Corteza de la Planta/metabolismo , Hojas de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Reproducción/fisiología
9.
Am Nat ; 178(1): 88-97, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21670580

RESUMEN

Facilitation (positive interactions) has emerged as a dominant ecological mechanism in many ecosystems. Its importance has recently been expanded to include intraspecific interactions, creating the potential for higher-level natural selection within species. Using multiple lines of evidence, we show that conspecific facilitation within the southern beech tree, Nothofagus pumilio, appears to overcome competition in two life phases. In a seedling experiment addressing stress and planting-density effects, we found that mortality was lowest (∼0%) where there was no stress and was indistinguishable across densities. Furthermore, in mature forests (45 years old), genetically variable, merged individuals had lower mortality (-50%) than unmerged individuals in locations without identifiable stress. Thus, a full understanding of the occurrence of facilitation may require a more general model of resource improvements than the commonly cited stress gradient hypothesis. Additionally, the merged trees showed a density-dependent mortality pattern at the level of the group. These data demonstrate a potential mechanism (facilitation) driving natural selection at this higher level, via stem merging. These merged "superorganisms" would confirm theoretical predictions whereby facilitation acts as an ecological mechanism driving group selection.


Asunto(s)
Magnoliopsida/genética , Dinámica Poblacional , Selección Genética , Envejecimiento , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Chile , Ambiente , Variación Genética , Magnoliopsida/fisiología , Densidad de Población , Estrés Fisiológico
10.
Nat Commun ; 12(1): 1242, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623042

RESUMEN

Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.


Asunto(s)
Cambio Climático , Árboles/fisiología , Fertilidad/fisiología , Geografía , Modelos Teóricos , América del Norte , Estaciones del Año
11.
PLoS One ; 15(9): e0238821, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32997673

RESUMEN

Land-use change and climate change are recognized as two main drivers of the current biodiversity decline. Protected areas help safeguard the landscape from additional anthropogenic disturbances and, when properly designed, can help species cope with climate change impacts. When designed to protect the regional biodiversity rather than to conserve focal species or landscape elements, protected areas need to cover a representative sample of the regional biodiversity and be functionally connected, facilitating individual movements among protected areas in a network to maximize their effectiveness. We developed a methodology to define effective protected areas to implement in a regional network using ecological representativeness and functional connectivity as criteria. We illustrated this methodology in the Gaspésie region of Québec, Canada. We simulated movements for the endangered Atlantic-Gaspésie caribou population (Rangifer tarandus caribou), using an individual-based model, to determine functional connectivity based on this large mammal. We created multiple protected areas network scenarios and evaluated their ecological representativeness and functional connectivity for the current and future conditions. We selected a subset of the most effective network scenarios and extracted the protected areas included in them. There was a tradeoff between ecological representativeness and functional connectivity for the created networks. Only a few protected areas among those available were repeatedly chosen in the most effective networks. Protected areas maximizing both ecological representativeness and functional connectivity represented suitable areas to implement in an effective protected areas network. These areas ensured that a representative sample of the regional biodiversity was covered by the network, as well as maximizing the movement over time between and inside the protected areas for the focal population.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales/métodos , Reno , Migración Animal , Animales , Simulación por Computador , Ecosistema , Mamíferos
13.
Ecology ; 90(1): 46-56, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19294912

RESUMEN

The ecological processes that create spatial patterns have been examined by direct measurement and through measurement of patterns resulting from experimental manipulations. But in many situations, creating experiments and direct measurement of spatial processes can be difficult or impossible. Here, we identify and define a rapidly emerging alternative approach, which we formalize as "space as a surrogate" for unmeasured processes, that is used to maximize inference about ecological processes through the analysis of spatial patterns or spatial residuals alone. This approach requires three elements to be successful: a priori hypotheses, ecological theory and/or knowledge, and precise spatial analysis. We offer new insights into a long-standing debate about process-pattern links in ecology and highlight six recent studies that have successfully examined spatial patterns to understand a diverse array of processes: competition in forest-stand dynamics, dispersal of freshwater fish, movement of American marten, invasion mechanisms of exotic trees, dynamics of natural disturbances, and tropical-plant diversity. Key benefits of using space as a surrogate can be found where experimental manipulation or direct measurements are difficult or expensive to obtain or not possible. We note that, even where experiments can be performed, this procedure may aid in measuring the in situ importance of the processes uncovered through experiments.


Asunto(s)
Demografía , Mustelidae/fisiología , Animales , Conservación de los Recursos Naturales , Ecosistema , Peces/fisiología , Agua Dulce , Actividad Motora , Árboles , Clima Tropical
14.
Trends Ecol Evol ; 34(3): 193-199, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30447938

RESUMEN

With their imposing grandeur, the small number of very tall tree species attract a disproportionate amount of scientific study. We right this bias by focusing here on the shorter trees, which often grow in the shade of the giants and many other places besides. That tall trees are so restricted in distribution indicates that there are far more habitats available for small trees. We discuss some leading candidates for the mechanisms that limit maximum plant height in any given habitat, as well as why every habitat has a range of plant sizes. At least two attributes - greater adaptation capacity and higher drought resistance - suggest that the forests of the future belong to short trees.


Asunto(s)
Aclimatación/fisiología , Sequías , Ecosistema , Bosques , Árboles/fisiología , Árboles/crecimiento & desarrollo
15.
Am Nat ; 169(5): 647-61, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17427135

RESUMEN

Spatially oriented studies have examined the role of competition on plant populations and communities but not the combined effects of microsite heterogeneity and competition. The aim of this study was threefold: first, to apply and test a common geostatistical tool (semivariograms) to disentangle competition and microsite effects; second, to assess the results of this methodology against a generalized early stand development model for tree populations; and third, to examine the role and timing of microsite and competition processes in early population stages. We mapped and measured annual relative growth rates of trees in three different-aged ponderosa pine stands in Patagonia, Chile. We tested the relative support of five a priori semivariogram-based hypotheses and showed that through stand development, many sites followed our expected sequence of semivariogram models. These translated to initial spatially random growth followed by microsite-dominated, mixed microsite and competition, and finally pure competition effects on growth. Our approach will have many and diverse applications wherever processes differ in the type of spatial pattern they exhibit as well as in spatial scale. We emphasize that this methodology works best when there is strong a priori support for the hypotheses being tested but the timing, strength, and occurrence of processes are not known.


Asunto(s)
Ecosistema , Modelos Teóricos , Pinus ponderosa/crecimiento & desarrollo , Árboles , Chile
16.
PLoS One ; 12(9): e0185515, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28934341

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0179294.].

17.
PLoS One ; 12(6): e0179294, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28609467

RESUMEN

Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover's direct effects and feedbacks in simulation models of coupled climate-fire-fuels systems.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Incendios , Bosques , Tiempo (Meteorología) , Algoritmos , Clima , Cambio Climático , Desastres , Sequías , Ecosistema , Geografía , Humanos , Modelos Teóricos , Quebec , Factores de Riesgo , Gestión de Riesgos/métodos , Árboles/crecimiento & desarrollo
19.
PLoS One ; 8(10): e78510, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24194942

RESUMEN

Many animal species exhibit broad-scale latitudinal or longitudinal gradients in their response to biotic and abiotic components of their habitat. Although knowing the underlying mechanism of these patterns can be critical to the development of sound measures for the preservation or recovery of endangered species, few studies have yet identified which processes drive the existence of geographical gradients in habitat selection. Using extensive spatial data of broad latitudinal and longitudinal extent, we tested three hypotheses that could explain the presence of geographical gradients in landscape selection of the endangered boreal woodland caribou (Rangifer tarandus caribou) during winter in Eastern Canadian boreal forests: 1) climate-driven selection, which postulates that geographic gradients are surrogates for climatic gradients; 2) road-driven selection, which proposes that boreal caribou adjust their selection for certain habitat classes as a function of proximity to roads; and 3) an additive effect of both roads and climate. Our data strongly supported road-driven selection over climate influences. Thus, direct human alteration of landscapes drives boreal caribou distribution and should likely remain so until the climate changes sufficiently from present conditions. Boreal caribou avoided logged areas two-fold more strongly than burnt areas. Limiting the spread of road networks and accounting for the uneven impact of logging compared to wildfire should therefore be integral parts of any habitat management plan and conservation measures within the range of the endangered boreal caribou. The use of hierarchical spatial models allowed us to explore the distribution of spatially-structured errors in our models, which in turn provided valuable insights for generating alternative hypotheses about processes responsible for boreal caribou distribution.


Asunto(s)
Distribución Animal , Cambio Climático , Conservación de los Recursos Naturales/métodos , Ecosistema , Reno/fisiología , Estaciones del Año , Animales , Geografía , Modelos Lineales , Dinámica Poblacional , Quebec
20.
Am J Bot ; 97(9): 1424-30, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21616896

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: Negative density-dependent processes have been thought to be the primary cause of shifting spatial patterns of tree populations through time. The existence of adult tree clusters might challenge this classical prediction. Here, we document the prevalence of merged stems (clustering of mature trees leading to stem fusion) in second-growth forests of Nothofagus pumilio and hypothesize that it is nonrandom but predictable in space. • METHODS: We stem-mapped nine sites in second-growth edge and interior forests of fire origin and in mature forests of N. pumilio (>3500 trees) in central Patagonia, Chile. The spatial structure of stand-level and individual-level features was estimated with spatial analyses (pair-correlation function and nearest-neighbor distances). • KEY RESULTS: Multistemmed trees were merged clusters of separate individuals. Merged trees were predominantly found at the edge of the second-growth forests. We found strong clustering (≤5 m) at forest edge sites and none at interior sites. Nearest-neighbor distance distributions were unimodal for unmerged trees and monotonically decreasing for merged trees; interstem distances were much smaller at the edge sites than at the interior sites. • CONCLUSIONS: The occurrence of merged trees at the forest edge, and the resulting high spatial aggregation of stems, is consistent with the hypothesis that establishment was probably aggregated. The spatial pattern found at the forest edge changes the standard spatial pattern sequence through time in temperate forests, altering traditional forest-stand-dynamics models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA