Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 475(7356): 348-52, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21776081

RESUMEN

The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.


Asunto(s)
Genoma Bacteriano/genética , Genoma Humano/genética , Genómica/instrumentación , Genómica/métodos , Semiconductores , Análisis de Secuencia de ADN/instrumentación , Análisis de Secuencia de ADN/métodos , Escherichia coli/genética , Humanos , Luz , Masculino , Rhodopseudomonas/genética , Vibrio/genética
2.
Nature ; 463(7278): 184-90, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20016488

RESUMEN

Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3-8 of CHD7 in frame, and another two lines carrying PVT1-CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.


Asunto(s)
Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/genética , Mutación/genética , Nicotiana/efectos adversos , Carcinoma Pulmonar de Células Pequeñas/etiología , Carcinoma Pulmonar de Células Pequeñas/genética , Fumar/efectos adversos , Carcinógenos/toxicidad , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN/efectos de los fármacos , Variaciones en el Número de Copia de ADN/genética , Daño del ADN/genética , ADN Helicasas/genética , Análisis Mutacional de ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Exones/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genoma Humano/efectos de los fármacos , Genoma Humano/genética , Humanos , Mutagénesis Insercional/efectos de los fármacos , Mutagénesis Insercional/genética , Mutación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Eliminación de Secuencia/genética
3.
Hum Mutat ; 35(11): 1285-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25130867

RESUMEN

Mutations in the nuclear-encoded mitochondrial aminoacyl-tRNA synthetases are associated with a range of clinical phenotypes. Here, we report a novel disorder in three adult patients with a phenotype including cataracts, short-stature secondary to growth hormone deficiency, sensorineural hearing deficit, peripheral sensory neuropathy, and skeletal dysplasia. Using SNP genotyping and whole-exome sequencing, we identified a single likely causal variant, a missense mutation in a conserved residue of the nuclear gene IARS2, encoding mitochondrial isoleucyl-tRNA synthetase. The mutation is homozygous in the affected patients, heterozygous in carriers, and absent in control chromosomes. IARS2 protein level was reduced in skin cells cultured from one of the patients, consistent with a pathogenic effect of the mutation. Compound heterozygous mutations in IARS2 were independently identified in a previously unreported patient with a more severe mitochondrial phenotype diagnosed as Leigh syndrome. This is the first report of clinical findings associated with IARS2 mutations.


Asunto(s)
Catarata/genética , Enanismo Hipofisario/genética , Pérdida Auditiva Sensorineural/genética , Isoleucina-ARNt Ligasa/genética , Enfermedad de Leigh/genética , Mutación , Enfermedades del Sistema Nervioso Periférico/genética , Adulto , Secuencia de Aminoácidos , Encéfalo/patología , Catarata/diagnóstico , Consanguinidad , Análisis Mutacional de ADN , Enanismo Hipofisario/diagnóstico , Femenino , Genes Recesivos , Pérdida Auditiva Sensorineural/diagnóstico , Humanos , Isoleucina-ARNt Ligasa/química , Enfermedad de Leigh/diagnóstico , Imagen por Resonancia Magnética , Masculino , Datos de Secuencia Molecular , Linaje , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Fenotipo , Alineación de Secuencia , Síndrome
4.
Genome Res ; 21(12): 2014-25, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22042643

RESUMEN

Recent RNA-sequencing studies have shown remarkable complexity in the mammalian transcriptome. The ultimate impact of this complexity on the predicted proteomic output is less well defined. We have undertaken strand-specific RNA sequencing of multiple cellular RNA fractions (>20 Gb) to uncover the transcriptional complexity of human embryonic stem cells (hESCs). We have shown that human embryonic stem (ES) cells display a high degree of transcriptional diversity, with more than half of active genes generating RNAs that differ from conventional gene models. We found evidence that more than 1000 genes express long 5' and/or extended 3'UTRs, which was confirmed by "virtual Northern" analysis. Exhaustive sequencing of the membrane-polysome and cytosolic/untranslated fractions of hESCs was used to identify RNAs encoding peptides destined for secretion and the extracellular space and to demonstrate preferential selection of transcription complexity for translation in vitro. The impact of this newly defined complexity on known gene-centric network models such as the Plurinet and the cell surface signaling machinery in human ES cells revealed a significant expansion of known transcript isoforms at play, many predicting possible alternative functions based on sequence alterations within key functional domains.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Células Madre Embrionarias/metabolismo , Modelos Genéticos , Células Madre Pluripotentes/metabolismo , Transcriptoma/fisiología , Línea Celular , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes/citología , Análisis de Secuencia de ARN/métodos
5.
Nature ; 453(7191): 56-64, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18451855

RESUMEN

Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation--a standard for genotyping platforms and a prelude to future individual genome sequencing projects.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Mapeo Físico de Cromosoma , Análisis de Secuencia de ADN , Inversión Cromosómica/genética , Eucromatina/genética , Eliminación de Gen , Geografía , Haplotipos , Humanos , Mutagénesis Insercional/genética , Polimorfismo de Nucleótido Simple/genética , Grupos Raciales/genética , Reproducibilidad de los Resultados
6.
Curr Biol ; 33(23): 5147-5159.e7, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38052161

RESUMEN

Fungi that are edible or fermentative were domesticated through selective cultivation of their desired traits. Domestication is often associated with inbreeding or selfing, which may fix traits other than those under selection, and causes an overall decrease in heterozygosity. A hallucinogenic mushroom, Psilocybe cubensis, was domesticated from its niche in livestock dung for production of psilocybin. It has caused accidental poisonings since the 1940s in Australia, which is a population hypothesized to be introduced from an unknown center of origin. We sequenced genomes of 38 isolates from Australia and compared them with 86 genomes of commercially available cultivars to determine (1) whether P. cubensis was introduced to Australia, and (2) how domestication has impacted commercial cultivars. Our analyses of genome-wide SNPs and single-copy orthologs showed that the Australian population is naturalized, having recovered its effective population size after a bottleneck when it was introduced, and it has maintained relatively high genetic diversity based on measures of nucleotide and allelic diversity. In contrast, domesticated cultivars generally have low effective population sizes and hallmarks of selfing and clonal propagation, including low genetic diversity, low heterozygosity, high linkage disequilibrium, and low allelic diversity of mating-compatibility genes. Analyses of kinship show that most cultivars are founded from related populations. Alleles in the psilocybin gene cluster are identical across most cultivars of P. cubensis with low diversity across coding sequence; however, unique allelic diversity in Australia and some cultivars may translate to differences in biosynthesis of psilocybin and its analogs.


Asunto(s)
Alucinógenos , Psilocibina , Domesticación , Australia , Polimorfismo de Nucleótido Simple , Variación Genética
7.
Genome Res ; 19(9): 1527-41, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19546169

RESUMEN

We describe the genome sequencing of an anonymous individual of African origin using a novel ligation-based sequencing assay that enables a unique form of error correction that improves the raw accuracy of the aligned reads to >99.9%, allowing us to accurately call SNPs with as few as two reads per allele. We collected several billion mate-paired reads yielding approximately 18x haploid coverage of aligned sequence and close to 300x clone coverage. Over 98% of the reference genome is covered with at least one uniquely placed read, and 99.65% is spanned by at least one uniquely placed mate-paired clone. We identify over 3.8 million SNPs, 19% of which are novel. Mate-paired data are used to physically resolve haplotype phases of nearly two-thirds of the genotypes obtained and produce phased segments of up to 215 kb. We detect 226,529 intra-read indels, 5590 indels between mate-paired reads, 91 inversions, and four gene fusions. We use a novel approach for detecting indels between mate-paired reads that are smaller than the standard deviation of the insert size of the library and discover deletions in common with those detected with our intra-read approach. Dozens of mutations previously described in OMIM and hundreds of nonsynonymous single-nucleotide and structural variants in genes previously implicated in disease are identified in this individual. There is more genetic variation in the human genome still to be uncovered, and we provide guidance for future surveys in populations and cancer biopsies.


Asunto(s)
Emparejamiento Base , Biología Computacional/métodos , Variación Genética , Genoma Humano , Ligasas , Análisis de Secuencia de ADN/métodos , África , Secuencia de Bases , Genómica , Genotipo , Heterocigoto , Homocigoto , Humanos , Polimorfismo de Nucleótido Simple , Estándares de Referencia
8.
Nat Methods ; 5(7): 613-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18516046

RESUMEN

We developed a massive-scale RNA sequencing protocol, short quantitative random RNA libraries or SQRL, to survey the complexity, dynamics and sequence content of transcriptomes in a near-complete fashion. This method generates directional, random-primed, linear cDNA libraries that are optimized for next-generation short-tag sequencing. We surveyed the poly(A)(+) transcriptomes of undifferentiated mouse embryonic stem cells (ESCs) and embryoid bodies (EBs) at an unprecedented depth (10 Gb), using the Applied Biosystems SOLiD technology. These libraries capture the genomic landscape of expression, state-specific expression, single-nucleotide polymorphisms (SNPs), the transcriptional activity of repeat elements, and both known and new alternative splicing events. We investigated the impact of transcriptional complexity on current models of key signaling pathways controlling ESC pluripotency and differentiation, highlighting how SQRL can be used to characterize transcriptome content and dynamics in a quantitative and reproducible manner, and suggesting that our understanding of transcriptional complexity is far from complete.


Asunto(s)
Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Animales , Diferenciación Celular , Células Madre Embrionarias/citología , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica/estadística & datos numéricos , Biblioteca de Genes , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Polimorfismo de Nucleótido Simple , Sensibilidad y Especificidad , Transducción de Señal
9.
F1000Res ; 10: 281, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322225

RESUMEN

We describe the use of high-fidelity single molecule sequencing to assemble the genome of the psychoactive Psilocybe cubensis mushroom. The genome is 46.6Mb, 46% GC, and in 32 contigs with an N50 of 3.3Mb. The BUSCO completeness scores are 97.6% with 1.2% duplicates. The Psilocybin synthesis cluster exists in a single 3.2Mb contig. The dataset is available from NCBI BioProject with accessions PRJNA687911 and PRJNA700437.


Asunto(s)
Agaricales , Psilocybe , Agaricales/genética , Psilocibina
10.
F1000Res ; 10: 624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484691

RESUMEN

BACKGROUND: Cannabis products are subjected to microbial testing for human pathogenic fungi and bacteria. These testing requirements often rely on non-specific colony forming unit (CFU/g) specifications without clarity on which medium, selection or growth times are required. We performed whole genome sequencing to assess the specificity of colony forming units (CFU) derived from three different plating media: Potato Dextrose Agar (PDA), PDA with chloramphenicol and Dichloran Rose Bengal with chloramphenicol (DRBC). METHODS: Colonies were isolated from each medium type and their whole genomes sequenced to identify the diversity of microbes present on each medium selection. Fungal Internal Transcribed Spacer (ITS3) and Bacterial 16S RNA(16S) quantitative polymerase chain reactions (qPCR) were performed, to correlate these CFUs with fungi- and bacterial- specific qPCR. RESULTS: Each plating medium displayed a ten-fold difference in CFU counts. PDA with chloramphenicol showed the highest diversity and the highest concordance with whole genome sequencing. According to ITS3 and 16S qPCR confirmed with whole genome sequencing, DRBC under counted yeast and mold while PDA without chloramphenicol over counted CFUs due to bacterial growth without selection. CONCLUSIONS: Colony Forming Unit regulations lack specificity. Each medium produces significant differences in CFU counts. These are further dependent on subjective interpretation, failure to culture most microbes, and poor selection between bacteria and fungi. Given the most human pathogenic microbes found on cannabis are endophytes which culture fails to detect, molecular methods offer a solution to this long-standing quantification problem in the cannabis testing field.


Asunto(s)
Cannabis , Benchmarking , Recuento de Colonia Microbiana , Flores , Microbiología de Alimentos , Hongos/genética , Humanos , Saccharomyces cerevisiae , Secuenciación Completa del Genoma
11.
F1000Res ; 10: 369, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35284065

RESUMEN

The performance of diagnostic tests crucially depends on the disease prevalence, test sensitivity, and test specificity. However, these quantities are often not well known when tests are performed outside defined routine lab procedures which make the rating of the test results somewhat problematic. A current example is the mass testing taking place within the context of the world-wide SARS-CoV-2 crisis. Here, for the first time in history, laboratory test results have a dramatic impact on political decisions. Therefore, transparent, comprehensible, and reliable data is mandatory. It is in the nature of wet lab tests that their quality and outcome are influenced by multiple factors reducing their performance by handling procedures, underlying test protocols, and analytical reagents. These limitations in sensitivity and specificity have to be taken into account when calculating the real test results. As a resolution method, we have developed a Bayesian calculator, the Bayes Lines Tool (BLT), for analyzing disease prevalence, test sensitivity, test specificity, and, therefore, true positive, false positive, true negative, and false negative numbers from official test outcome reports. The calculator performs a simple SQL (Structured Query Language) query and can easily be implemented on any system supporting SQL. We provide an example of influenza test results from California, USA, as well as two examples of SARS-CoV-2 test results from official government reports from The Netherlands and Germany-Bavaria, to illustrate the possible parameter space of prevalence, sensitivity, and specificity consistent with the observed data. Finally, we discuss this tool's multiple applications, including its putative importance for informing policy decisions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Teorema de Bayes , COVID-19/diagnóstico , COVID-19/epidemiología , Pruebas Diagnósticas de Rutina , Humanos , Sensibilidad y Especificidad
12.
Clin Chem ; 56(3): 459-63, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20026875

RESUMEN

BACKGROUND: Noninvasive prenatal diagnosis of trisomy 21 (T21) has recently been shown to be achievable by massively parallel sequencing of maternal plasma on a sequencing-by-synthesis platform. The quantification of several other human chromosomes, including chromosomes 18 and 13, has been shown to be less precise, however, with quantitative biases related to the chromosomal GC content. METHODS: Maternal plasma DNA from 10 euploid and 5 T21 pregnancies was sequenced with a sequencing-by-ligation approach. We calculated the genomic representations (GRs) of sequenced reads from each chromosome and their associated measurement CVs and compared the GRs of chromosome 21 (chr21) for the euploid and T21 pregnancies. RESULTS: We obtained a median of 12 x 10(6) unique reads (21% of the total reads) per sample. The GRs deviated from those expected for some chromosomes but in a manner different from that previously reported for the sequencing-by-synthesis approach. Measurements of the GRs for chromosomes 18 and 13 were less precise than for chr21. z Scores of the GR of chr21 were increased in the T21 pregnancies, compared with the euploid pregnancies. CONCLUSIONS: Massively parallel sequencing-by-ligation of maternal plasma DNA was effective in identifying T21 fetuses noninvasively. The quantitative biases observed among the GRs of certain chromosomes were more likely based on analytical factors than biological factors. Further research is needed to enhance the precision for measuring for the representations of chromosomes 18 and 13.


Asunto(s)
ADN/genética , Síndrome de Down/diagnóstico , Diagnóstico Prenatal/métodos , Cromosomas Humanos Par 21 , ADN/sangre , Síndrome de Down/genética , Femenino , Pruebas Genéticas/métodos , Humanos , Embarazo , Análisis de Secuencia de ADN/métodos
13.
Nature ; 431(7011): 946-57, 2004 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-15496914

RESUMEN

Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests approximately 900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.


Asunto(s)
Cromosomas/genética , Peces/genética , Duplicación de Gen , Genoma , Vertebrados/genética , Animales , Composición de Base , Cromosomas Humanos/genética , Secuencia Conservada/genética , Evolución Molecular , Genes/genética , Humanos , Cariotipificación , Mamíferos/genética , Modelos Genéticos , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Proteoma , Análisis de Secuencia de ADN , Sintenía/genética , Urocordados/genética
14.
PLoS One ; 14(9): e0222363, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31513654

RESUMEN

Terpenes are responsible for most or all of the odor and flavor properties of Cannabis sativa, and may also impact effects users experience either directly or indirectly. We report the diversity of terpene profiles across samples bound for the Washington dispensary market. The remarkable degree of variation in terpene profiles ultimately results from action of a family of terpene synthase genes, only some of which have been described. Using a recently available genome assembly we describe 55 terpene synthases with genomic context, and tissue specific expression. The family is quite diverse from a protein similarity perspective, and subsets of the family are expressed in all tissues in the plant, including a set of root specific monoterpene synthases that could well have agronomic importance. Ultimately understanding and breeding for specific terpene profiles will require a good understanding of the gene family that underlies it. We intend for this work to serve as a foundation for that.


Asunto(s)
Transferasas Alquil y Aril/genética , Cannabis/genética , Terpenos/metabolismo , Transferasas Alquil y Aril/metabolismo , Cannabis/química , Clonación Molecular/métodos , Evolución Molecular , Flores/genética , Genes de Plantas , Genoma de Planta/genética , Genómica , Filogenia , Terpenos/química
15.
Accid Anal Prev ; 98: 157-166, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27723517

RESUMEN

This paper describes a comparison of pedestrian compliance at traffic signals with two types of pedestrian phasing: concurrent, where both pedestrians and vehicular traffic are directed to move in the same directions at the same time, and exclusive, where pedestrians are directed to move during their own dedicated phase while all vehicular traffic is stopped. Exclusive phasing is usually perceived to be safer, especially by senior and disabled advocacy groups, although these safety benefits depend upon pedestrians waiting for the walk signal. This paper investigates whether or not there are differences between pedestrian compliance at signals with exclusive pedestrian phasing and those with concurrent phasing and whether these differences continue to exist when compliance at exclusive phasing signals is evaluated as if they had concurrent phasing. Pedestrian behavior was observed at 42 signalized intersections in central Connecticut with both concurrent and exclusive pedestrian phasing. Binary regression models were estimated to predict pedestrian compliance as a function of the pedestrian phasing type and other intersection characteristics, such as vehicular and pedestrian volume, crossing distance and speed limit. We found that pedestrian compliance is significantly higher at intersections with concurrent pedestrian phasing than at those with exclusive pedestrian phasing, but this difference is not significant when compliance at exclusive phase intersections is evaluated as if it had concurrent phasing. This suggests that pedestrians treat exclusive phase intersections as though they have concurrent phasing, rendering the safety benefits of exclusive pedestrian phasing elusive. No differences were observed for senior or non-senior pedestrians.


Asunto(s)
Accidentes de Tránsito/prevención & control , Peatones/estadística & datos numéricos , Administración de la Seguridad/estadística & datos numéricos , Caminata , Connecticut , Planificación Ambiental , Humanos , Modelos Teóricos , Población Urbana
16.
PLoS One ; 12(11): e0187926, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29145497

RESUMEN

Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1), were found to be significantly associated with pain sensitivity (especially migraine), sleep and memory disorders-alone or in combination with anxiety-compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.


Asunto(s)
Endocannabinoides/genética , Lipoproteína Lipasa/genética , Enfermedades del Sistema Nervioso/genética , Receptor Cannabinoide CB1/genética , Humanos , Fenotipo
17.
Nucleic Acids Res ; 32(3): 1059-64, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14872061

RESUMEN

Protein interaction maps can reveal novel pathways and functional complexes, allowing 'guilt by association' annotation of uncharacterized proteins. To address the need for large-scale protein interaction analyses, a bacterial two-hybrid system was coupled with a whole genome shotgun sequencing approach for microbial genome analysis. We report the first large-scale proteomics study using this system, integrating de novo genome sequencing with functional interaction mapping and annotation in a high-throughput format. We apply the approach by shotgun sequencing and annotating the genome of Rickettsia sibirica strain 246, an obligate intracellular human pathogen among the Spotted Fever Group rickettsiae. The bacteria invade endothelial cells and cause lysis after large amounts of progeny have accumulated. Little is known about specific Rickettsial virulence factors and their mode of pathogenicity. Analysis of the combined genomic sequence and protein-protein interaction data for a set of virulence related Type IV secretion system (T4SS) proteins revealed over 250 interactions and will provide insight into the mechanism of Rickettsial pathogenicity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Rickettsia/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Genoma Bacteriano , Biblioteca Genómica , Rickettsia/metabolismo , Rickettsia/patogenicidad
18.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(6): 4518-4519, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26486305

RESUMEN

We sequenced several cannabis genomes in 2011 of June and the first and the longest contigs to emerge were the chloroplast and mitochondrial genomes. Having been a contributor to the Human Genome Project and an eye-witness to the real benefits of immediate data release, I have first hand experience with the potential mal-investment of millions of dollars of tax payer money narrowly averted due to the adopted global rapid data release policy. The policy was vital in reducing duplication of effort and economic waste. As a result, we felt obligated to publish the Cannabis genome data in a similar spirit and placed them immediately on a cloud based Amazon server in August of 2011. While these rapid data release practices were heralded by many in the media, we still find some authors fail to find or reference said work and hope to compel the readership that this omission has more pervasive repercussions than bruised egos and is a regression for our community.


Asunto(s)
Cloroplastos/genética , Bases de Datos Factuales , Genoma del Cloroplasto , Almacenamiento y Recuperación de la Información , Cannabis/genética , Bases de Datos Factuales/economía , Proyecto Genoma Humano , Humanos , Almacenamiento y Recuperación de la Información/economía , Edición/economía
19.
F1000Res ; 5: 2471, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27853518

RESUMEN

Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries.

20.
F1000Res ; 4: 1422, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27303623

RESUMEN

The Center for Disease Control estimates 128,000 people in the U.S. are hospitalized annually due to food borne illnesses. This has created a demand for food safety testing targeting the detection of pathogenic mold and bacteria on agricultural products. This risk extends to medical Cannabis and is of particular concern with inhaled, vaporized and even concentrated Cannabis products . As a result, third party microbial testing has become a regulatory requirement in the medical and recreational Cannabis markets, yet knowledge of the Cannabis microbiome is limited. Here we describe the first next generation sequencing survey of the fungal communities found in dispensary based Cannabis flowers by ITS2 sequencing, and demonstrate the sensitive detection of several toxigenic Penicillium and Aspergillus species, including P. citrinum and P. paxilli, that were not detected by one or more culture-based methods currently in use for safety testing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA