Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell ; 73(3): 533-546.e4, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595435

RESUMEN

Quiescence is a stress-resistant state in which cells reversibly exit the cell cycle and suspend most processes. Quiescence is essential for stem cell maintenance, and its misregulation is implicated in tumor formation. One of the hallmarks of quiescent cells is highly condensed chromatin. Because condensed chromatin often correlates with transcriptional silencing, it has been hypothesized that chromatin compaction represses transcription during quiescence. However, the technology to test this model by determining chromatin structure within cells at gene resolution has not previously been available. Here, we use Micro-C XL to map chromatin contacts at single-nucleosome resolution genome-wide in quiescent Saccharomyces cerevisiae cells. We describe chromatin domains on the order of 10-60 kilobases that, only in quiescent cells, are formed by condensin-mediated loops. Condensin depletion prevents the compaction of chromatin within domains and leads to widespread transcriptional de-repression. Finally, we demonstrate that condensin-dependent chromatin compaction is conserved in quiescent human fibroblasts.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Senescencia Celular , Ensamble y Desensamble de Cromatina , Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/enzimología , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Adenosina Trifosfatasas/genética , Sitios de Unión , Proliferación Celular , Células Cultivadas , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Humanos , Complejos Multiproteicos/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
2.
PLoS Genet ; 18(12): e1010559, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542663

RESUMEN

Upon glucose starvation, S. cerevisiae shows a dramatic alteration in transcription, resulting in wide-scale repression of most genes and activation of some others. This coincides with an arrest of cellular proliferation. A subset of such cells enters quiescence, a reversible non-dividing state. Here, we demonstrate that the conserved transcriptional corepressor Tup1 is critical for transcriptional repression after glucose depletion. We show that Tup1-Ssn6 binds new targets upon glucose depletion, where it remains as the cells enter the G0 phase of the cell cycle. In addition, we show that Tup1 represses a variety of glucose metabolism and transport genes. We explored how Tup1 mediated repression is accomplished and demonstrated that Tup1 coordinates with the Rpd3L complex to deacetylate H3K23. We found that Tup1 coordinates with Isw2 to affect nucleosome positions at glucose transporter HXT family genes during G0. Finally, microscopy revealed that a quarter of cells with a Tup1 deletion contain multiple DAPI puncta. Taken together, these findings demonstrate the role of Tup1 in transcriptional reprogramming in response to environmental cues leading to the quiescent state.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Proteínas Fúngicas/genética , Proteínas Nucleares/genética , Glucosa/genética , Glucosa/metabolismo , Regulación Fúngica de la Expresión Génica
3.
Mol Cell ; 59(5): 732-43, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26300265

RESUMEN

Quiescence is a conserved cell-cycle state characterized by cell-cycle arrest, increased stress resistance, enhanced longevity, and decreased transcriptional, translational, and metabolic output. Although quiescence plays essential roles in cell survival and normal differentiation, the molecular mechanisms leading to this state are not well understood. Here, we determined changes in the transcriptome and chromatin structure of S. cerevisiae upon quiescence entry. Our analyses revealed transcriptional shutoff that is far more robust than previously believed and an unprecedented global chromatin transition, which are tightly correlated. These changes require Rpd3 lysine deacetylase targeting to at least half of gene promoters via quiescence-specific transcription factors including Xbp1 and Stb3. Deletion of RPD3 prevents cells from establishing transcriptional quiescence, leading to defects in quiescence entry and shortening of chronological lifespan. Our results define a molecular mechanism for global reprogramming of transcriptome and chromatin structure for quiescence driven by a highly conserved chromatin regulator.


Asunto(s)
Histona Desacetilasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Eliminación de Gen , Genes Fúngicos , Histona Desacetilasas/metabolismo , Modelos Biológicos , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Transcriptoma
4.
Genome Res ; 26(5): 693-704, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26993344

RESUMEN

ATP-dependent chromatin remodelers regulate chromatin dynamics by modifying nucleosome positions and occupancy. DNA-dependent processes such as replication and transcription rely on chromatin to faithfully regulate DNA accessibility, yet how chromatin remodelers achieve well-defined nucleosome positioning in vivo is poorly understood. Here, we report a simple method for site-specifically altering nucleosome positions in live cells. By fusing the Chd1 remodeler to the DNA binding domain of the Saccharomyces cerevisiae Ume6 repressor, we have engineered a fusion remodeler that selectively positions nucleosomes on top of adjacent Ume6 binding motifs in a highly predictable and reproducible manner. Positioning of nucleosomes by the fusion remodeler recapitulates closed chromatin structure at Ume6-sensitive genes analogous to the endogenous Isw2 remodeler. Strikingly, highly precise positioning of single founder nucleosomes by either chimeric Chd1-Ume6 or endogenous Isw2 shifts phased chromatin arrays in cooperation with endogenous chromatin remodelers. Our results demonstrate feasibility of engineering precise nucleosome rearrangements through sequence-targeted chromatin remodeling and provide insight into targeted action and cooperation of endogenous chromatin remodelers in vivo.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/genética , Nucleosomas/genética , Dominios Proteicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Bioessays ; 39(1): 1-8, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27862071

RESUMEN

Eukaryotic genomes are functionally organized into chromatin, a compact packaging of nucleoproteins with the basic repeating unit known as the nucleosome. A major focus for the chromatin field has been understanding what rules govern nucleosome positioning throughout the genome, and here we review recent findings using a novel, sequence-targeted remodeling enzyme. Nucleosomes are often packed into evenly spaced arrays that are reproducibly positioned, but how such organization is established and maintained through dramatic events such as DNA replication is poorly understood. We hypothesize that a major fraction of positioned nucleosomes arises from sequence-specific targeting of chromatin remodelers to generate "founding" nucleosomes, providing reproducible, predictable, and condition-specific nucleation sites against which neighboring nucleosomes are packed into evenly spaced arrays.


Asunto(s)
Ensamble y Desensamble de Cromatina , Nucleosomas/metabolismo , Animales , ADN/metabolismo , Replicación del ADN , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética
6.
Mol Cell ; 39(5): 711-23, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20832723

RESUMEN

Chromatin remodelers are ATP-driven machines that assemble, slide, and remove nucleosomes from DNA, but how the ATPase motors of remodelers are regulated is poorly understood. Here we show that the double chromodomain unit of the Chd1 remodeler blocks DNA binding and activation of the ATPase motor in the absence of nucleosome substrates. The Chd1 crystal structure reveals that an acidic helix joining the chromodomains can pack against a DNA-binding surface of the ATPase motor. Disruption of the chromodomain-ATPase interface prevents discrimination between nucleosomes and naked DNA and reduces the reliance on the histone H4 tail for nucleosome sliding. We propose that the chromodomains allow Chd1 to distinguish between nucleosomes and naked DNA by physically gating access to the ATPase motor, and we hypothesize that related ATPase motors may employ a similar strategy to discriminate among DNA-containing substrates.


Asunto(s)
Adenosina Trifosfatasas , ADN de Hongos , Proteínas de Unión al ADN , Histonas , Nucleosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Cristalografía por Rayos X , ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Histonas/química , Histonas/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
7.
Nucleic Acids Res ; 41(3): 1637-48, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23275572

RESUMEN

Chromatin remodelers can either organize or disrupt nucleosomal arrays, yet the mechanisms specifying these opposing actions are not clear. Here, we show that the outcome of nucleosome sliding by Chd1 changes dramatically depending on how the chromatin remodeler is targeted to nucleosomes. Using a Chd1-streptavidin fusion remodeler, we found that targeting via biotinylated DNA resulted in directional sliding towards the recruitment site, whereas targeting via biotinylated histones produced a distribution of nucleosome positions. Remarkably, the fusion remodeler shifted nucleosomes with biotinylated histones up to 50 bp off the ends of DNA and was capable of reducing negative supercoiling of plasmids containing biotinylated chromatin, similar to remodelling characteristics observed for SWI/SNF-type remodelers. These data suggest that forming a stable attachment to nucleosomes via histones, and thus lacking sensitivity to extranucleosomal DNA, seems to be sufficient for allowing a chromatin remodeler to possess SWI/SNF-like disruptive properties.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Estreptavidina/genética
8.
Proc Natl Acad Sci U S A ; 107(52): 22475-80, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21149689

RESUMEN

Apurinic/apyrimidinic (AP) sites are ubiquitous DNA lesions that are highly mutagenic and cytotoxic if not repaired. In addition, clusters of two or more abasic lesions within one to two turns of DNA, a hallmark of ionizing radiation, are repaired much less efficiently and thus present greater mutagenic potential. Abasic sites are chemically labile, but naked DNA containing them undergoes strand scission slowly with a half-life on the order of weeks. We find that independently generated AP sites within nucleosome core particles are highly destabilized, with strand scission occurring ∼60-fold more rapidly than in naked DNA. The majority of core particles containing single AP lesions accumulate DNA-protein cross-links, which persist following strand scission. The N-terminal region of histone protein H4 contributes significantly to DNA-protein cross-links and strand scission when AP sites are produced approximately 1.5 helical turns from the nucleosome dyad, which is a known hot spot for nucleosomal DNA damage. Reaction rates for AP sites at two positions within this region differ by ∼4-fold. However, the strand scission of the slowest reacting AP site is accelerated when it is part of a repair resistant bistranded lesion composed of two AP sites, resulting in rapid formation of double strand breaks in high yields. Multiple lysine residues within a single H4 protein catalyze double strand cleavage through a mechanism believed to involve a templating effect. These results show that AP sites within the nucleosome produce significant amounts of DNA-protein cross-links and generate double strand breaks, the most deleterious form of DNA damage.


Asunto(s)
Daño del ADN , ADN/metabolismo , Nucleosomas/metabolismo , Proteínas/metabolismo , Ácido Apurínico/química , Ácido Apurínico/genética , Ácido Apurínico/metabolismo , Secuencia de Bases , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo , ADN/química , ADN/genética , Reparación del ADN , Electroforesis en Gel de Poliacrilamida , Histonas/química , Histonas/genética , Histonas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Nucleosomas/genética , Polinucleótidos/química , Polinucleótidos/genética , Polinucleótidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética
9.
bioRxiv ; 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37461563

RESUMEN

The organization of chromatin - including the positions of nucleosomes and the binding of other proteins to DNA - helps define transcriptional profiles in eukaryotic organisms. While techniques like ChIP-Seq and MNase-Seq can map protein-DNA and nucleosome localization separately, assays designed to simultaneously capture nucleosome positions and protein-DNA interactions can produce a detailed picture of the chromatin landscape. Most assays that monitor chromatin organization and protein binding rely on antibodies, which often exhibit nonspecific binding, and/or the addition of bulky adducts to the DNA-binding protein being studied, which can affect their expression and activity. Here, we describe SpyCatcher Linked Targeting of Chromatin Endogenous Cleavage (SpLiT-ChEC), where a 13-amino acid SpyTag peptide, appended to a protein of interest, serves as a highly-specific targeting moiety for in situ enzymatic digestion. The SpyTag/SpyCatcher system forms a covalent bond, linking the target protein and a co-expressed MNase-SpyCatcher fusion construct. SpyTagged proteins are expressed from endogenous loci, whereas MNase-SpyCatcher expression is induced immediately before harvesting cultures. MNase is activated with high concentrations of calcium, which primarily digests DNA near target protein binding sites. By sequencing the DNA fragments released by targeted MNase digestion, we found that this method recovers information on protein binding and proximal nucleosome positioning. SpLiT-ChEC provides precise temporal control that we anticipate can be used to monitor chromatin under various conditions and at distinct points in the cell cycle.

10.
Biochemistry ; 51(30): 6028-38, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22784353

RESUMEN

The excision of uracil bases from DNA is accomplished by the enzyme uracil DNA glycosylase (UNG). Recognition of uracil bases in free DNA is facilitated by uracil base pair dynamics, but it is not known whether this same mechanistic feature is relevant for detection and excision of uracil residues embedded in nucleosomes. Here we investigate this question using nucleosome core particles (NCPs) generated from Xenopus laevis histones and the high-affinity "Widom 601" positioning sequence. The reactivity of uracil residues in NCPs under steady-state multiple-turnover conditions was generally decreased compared to that of free 601 DNA, mostly because of anticipated steric effects of histones. However, some sites in NCPs had equal or even greater reactivity than free DNA, and the observed reactivities were not readily explained by simple steric considerations or by global DNA unwrapping models for nucleosome invasion. In particular, some reactive uracils were found in occluded positions, while some unreactive uracils were found in exposed positions. One feature of many exposed reactive sites is a wide DNA minor groove, which allows penetration of a key active site loop of the enzyme. In single-turnover kinetic measurements, multiphasic reaction kinetics were observed for several uracil sites, where each kinetic transient was independent of the UNG concentration. These kinetic measurements, and supporting structural analyses, support a mechanism in which some uracils are transiently exposed to UNG by local, rate-limiting nucleosome conformational dynamics, followed by rapid trapping of the exposed state by the enzyme. We present structural models and plausible reaction mechanisms for the reaction of UNG at three distinct uracil sites in the NCP.


Asunto(s)
Reparación del ADN , ADN/química , Nucleosomas/química , Uracilo/química , Animales , Cristalografía por Rayos X/métodos , ADN/metabolismo , Reparación del ADN/fisiología , Nucleosomas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Uracilo/metabolismo , Xenopus laevis
11.
J Biol Chem ; 286(51): 43984-43993, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22039057

RESUMEN

Chromatin remodelers are ATP-dependent machines responsible for directionally shifting nucleosomes along DNA. We are interested in defining which elements of the chromodomain helicase DNA-binding protein 1 (Chd1) remodeler are necessary and sufficient for sliding nucleosomes. This work focuses on the polypeptide segment that joins the ATPase motor to the C-terminal DNA-binding domain. We identify amino acid positions outside the ATPase motor that, when altered, dramatically reduce nucleosome sliding ability and yet have only ∼3-fold reduction in ATPase stimulation by nucleosomes. These residues therefore appear to play a role in functionally coupling ATP hydrolysis to nucleosome sliding, and suggest that the ATPase motor requires cooperation with external elements to slide DNA past the histone core.


Asunto(s)
Adenosina Trifosfato/química , Proteínas de Unión al ADN/química , Nucleosomas/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Cromatina/química , Dicroismo Circular , Regulación Fúngica de la Expresión Génica , Hidrólisis , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
12.
Elife ; 102021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33576335

RESUMEN

Eukaryotic genomes are organized dynamically through the repositioning of nucleosomes. Isw2 is an enzyme that has been previously defined as a genome-wide, nonspecific nucleosome spacing factor. Here, we show that Isw2 instead acts as an obligately targeted nucleosome remodeler in vivo through physical interactions with sequence-specific factors. We demonstrate that Isw2-recruiting factors use small and previously uncharacterized epitopes, which direct Isw2 activity through highly conserved acidic residues in the Isw2 accessory protein Itc1. This interaction orients Isw2 on target nucleosomes, allowing for precise nucleosome positioning at targeted loci. Finally, we show that these critical acidic residues have been lost in the Drosophila lineage, potentially explaining the inconsistently characterized function of Isw2-like proteins. Altogether, these data suggest an 'interacting barrier model,' where Isw2 interacts with a sequence-specific factor to accurately and reproducibly position a single, targeted nucleosome to define the precise border of phased chromatin arrays.


DNA encodes the genetic instructions for life in a long, flexible molecular chain that is packaged up neatly to fit inside cells. Short sections of DNA are wound around proteins to form bundles called nucleosomes, and then spun into chromatin fibres, a more compact form of DNA. While nucleosomes are a fundamental part of this space-saving packaging process, they also play a key regulatory role in gene expression, which is where genes are decoded into working proteins. Placing nucleosomes at regular intervals along DNA invariably controls which parts of the DNA ­ and which genes ­ the cell's machinery can access and 'read' to make proteins. But the nucleosomes' positions are not fixed, and gene expression is a dynamic process. The cell often uncoils and repackages its DNA while molecular motors called chromatin remodelling proteins move nucleosomes up and down the DNA, exposing some genes and obstructing others. One group of chromatin remodelling proteins are called Imitation Switch (ISWI) complexes. It has long been thought that these complexes position nucleosomes with little regard to the underlying DNA sequence or the genes encoded, that is to say in a non-specific way. However, this theory has not been thoroughly tested. It is possible that ISWI complexes actually place nucleosomes on certain parts of DNA at particular times in an organism's development, or in response to other environmental factors. Except how such precision is achieved remains unknown. To test this alternative theory of nucleosome positioning, Donovan et al. studied ISWI proteins and nucleosomes in common baker's yeast. This involved systematically removing sections of ISWI proteins to see whether the complexes could still position nucleosomes, and which parts of the proteins where essential for the job. By doing so, Donovan et al. identified multiple 'targeting' proteins that bind to ISWI proteins and deliver the complexes to specific target sequences of DNA. From there, the complex remodels the nucleosome, positioning it at a specific distance from its landing site on DNA, as further experiments showed. This research provides a new model for explaining how nucleosomes are positioned to package DNA and control gene expression. Donovan et al. have identified a new mechanism of interaction between nucleosomes and chromatin remodelling proteins of the ISWI variety. It is possible that more interactions of this kind will be discovered with further research.


Asunto(s)
Adenosina Trifosfatasas/genética , Ensamble y Desensamble de Cromatina/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Adenosina Trifosfatasas/metabolismo , Animales , Drosophila/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
13.
STAR Protoc ; 2(2): 100486, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34041500

RESUMEN

MNase-seq (micrococcal nuclease sequencing) is used to map nucleosome positions in eukaryotic genomes to study the relationship between chromatin structure and DNA-dependent processes. Current protocols require at least two days to isolate nucleosome-protected DNA fragments. We have developed a streamlined protocol for S. cerevisiae and other fungi which takes only three hours. Modified protocols were developed for wild fungi and mammalian cells. This method for rapidly producing sequencing-ready nucleosome footprints from several organisms makes MNase-seq faster and easier, with less chemical waste.


Asunto(s)
Huella de ADN/métodos , Nucleosomas , Análisis de Secuencia de ADN/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , ADN/química , ADN/genética , ADN/metabolismo , Genómica , Nucleasa Microcócica/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética
14.
Cell Rep ; 29(8): 2520-2535.e4, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747617

RESUMEN

Regulation of chromatin structure is essential for controlling access of DNA to factors that require association with specific DNA sequences. Here we describe the development and validation of engineered chromatin remodeling proteins (E-ChRPs) for inducing programmable changes in nucleosome positioning by design. We demonstrate that E-ChRPs function both in vitro and in vivo to specifically reposition target nucleosomes and entire nucleosomal arrays. We show that induced, systematic positioning of nucleosomes over yeast Ume6 binding sites leads to Ume6 exclusion, hyperacetylation, and transcriptional induction at target genes. We also show that programmed global loss of nucleosome-free regions at Reb1 targets is generally inhibitory with mildly repressive transcriptional effects. E-ChRPs are compatible with multiple targeting modalities, including the SpyCatcher and dCas9 moieties, resulting in high versatility and enabling diverse future applications. Thus, engineered chromatin remodeling proteins represent a simple and robust means to probe and disrupt DNA-dependent processes in different chromatin contexts.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Nucleosomas/metabolismo , Animales , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Genom Data ; 6: 245-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26697386

RESUMEN

Quiescence is a ubiquitous cell cycle stage conserved from microbes through humans and is essential to normal cellular function and response to changing environmental conditions. We recently reported a massive repressive event associated with quiescence in Saccharomyces cerevisiae, where Rpd3 establishes repressive chromatin structure that drives transcriptional shutoff [6]. Here, we describe in detail the experimental procedures, data collection, and data analysis related to our characterization of transcriptional quiescence in budding yeast (GEO: GSE67151). Our results provide a bona fide molecular event driven by widespread changes in chromatin structure through action of Rpd3 that distinguishes quiescence as a unique cell cycle stage in S. cerevisiae.

16.
Elife ; 42015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-26047462

RESUMEN

The chromatin landscape and promoter architecture are dominated by the interplay of nucleosome and transcription factor (TF) binding to crucial DNA sequence elements. However, it remains unclear whether nucleosomes mobilized by chromatin remodelers can influence TFs that are already present on the DNA template. In this study, we investigated the interplay between nucleosome remodeling, by either yeast ISW1a or SWI/SNF, and a bound TF. We found that a TF serves as a major barrier to ISW1a remodeling, and acts as a boundary for nucleosome repositioning. In contrast, SWI/SNF was able to slide a nucleosome past a TF, with concurrent eviction of the TF from the DNA, and the TF did not significantly impact the nucleosome positioning. Our results provide direct evidence for a novel mechanism for both nucleosome positioning regulation by bound TFs and TF regulation via dynamic repositioning of nucleosomes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Biológicos , Nucleosomas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , ADN/química , Pinzas Ópticas , Plásmidos/genética , Factores de Transcripción/genética
17.
Curr Protoc Mol Biol ; 108: 21.28.1-21.28.16, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25271716

RESUMEN

Because histones bind DNA very tightly, the location on DNA and the level of occupancy of a given DNA sequence by nucleosomes can profoundly affect accessibility of non-histone proteins to chromatin, affecting virtually all DNA-dependent processes, such as transcription, DNA repair, DNA replication and recombination. Therefore, it is often necessary to determine positions and occupancy of nucleosomes to understand how DNA-dependent processes are regulated. Recent technological advances made such analyses feasible on a genome-wide scale at high resolution. In addition, we have recently developed a method to measure nuclease accessibility of nucleosomes on a global scale. This unit describes methods to map nucleosome positions, to determine nucleosome density, and to determine nuclease accessibility of nucleosomes using deep sequencing.


Asunto(s)
ADN de Hongos/genética , Genoma Fúngico/fisiología , Estudio de Asociación del Genoma Completo/métodos , Histonas/genética , Nucleosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Replicación del ADN/fisiología , ADN de Hongos/química , ADN de Hongos/metabolismo , Histonas/química , Histonas/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Mol Cell Biol ; 31(23): 4746-59, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21969605

RESUMEN

Chd1- and ISWI-type chromatin remodelers can sense extranucleosomal DNA and preferentially shift nucleosomes toward longer stretches of available DNA. The DNA-binding domains of these chromatin remodelers are believed to be responsible for sensing extranucleosomal DNA and are needed for robust sliding, but it is unclear how these domains contribute to directional movement of nucleosomes. Here, we show that the DNA-binding domain of Chd1 is not essential for nucleosome sliding but is critical for centering mononucleosomes on short DNA fragments. Remarkably, nucleosome centering was achieved by replacing the native DNA-binding domain of Chd1 with foreign DNA-binding domains of Escherichia coli AraC or Drosophila melanogaster engrailed. Introducing target DNA sequences recognized by the foreign domains enabled the remodelers to rapidly shift nucleosomes toward these binding sites, demonstrating that these foreign DNA-binding domains dictated the direction of sliding. Sequence-directed sliding occluded the target DNA sequences on the nucleosome enough to promote release of the remodeler. Target DNA sequences were highly stimulatory at multiple positions flanking the nucleosome and had the strongest influence when separated from the nucleosome by 23 or fewer base pairs. These results suggest that the DNA-binding domain's affinity for extranucleosomal DNA is the key determinant for the direction that Chd1 shifts the nucleosome.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/química , Nucleosomas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae , Adenosina Trifosfato/química , Factor de Transcripción de AraC/química , Factor de Transcripción de AraC/genética , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Pruebas de Enzimas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fluorometría , Unión Proteica , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA