Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biol Reprod ; 108(5): 758-777, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36799886

RESUMEN

Chlamydia is the most common bacterial sexually transmitted infection worldwide and it is widely acknowledged that controlling the rampant community transmission of this infection requires vaccine development. In this study, for the first time, we elucidate the long-term response to male mouse chlamydial vaccination with chlamydial major outer membrane protein (MOMP) and ISCOMATRIX (IMX) both prophylactically and in a novel therapeutic setting. Vaccination significantly reduced and, in some cases, cleared chlamydial burden from the prostates, epididymides, and testes, which correlates with high IgG and IgA tires in tissues and serum. Important markers of sperm health and fertility were protected including sperm motility and proteins associated with fertility in men. Within splenocytes, expression of IFNγ, TNFα, IL17, IL13, IL10, and TGFß were changed by both infection and vaccination within CD4 and CD8 T cells and regulatory T cells. Within the testicular tissue, phenotypic and concentration changes were observed in macrophages and T cells (resident and transitory). This revealed some pathogenic phenotypes associated with infection and critically that vaccination allows maintenance of testicular homeostasis, likely by preventing significant influx of CD4 T cells and promoting IL10 production. Finally, we demonstrated the testes contained immature (B220+) B cells and mature (CD138+) Chlamydia-specific plasma cells. Thus, through vaccination, we can maintain the healthy function of the testes, which is vital to protection of male fertility.


Asunto(s)
Infecciones por Chlamydia , Chlamydia muridarum , Masculino , Animales , Ratones , Infecciones por Chlamydia/prevención & control , Infecciones por Chlamydia/complicaciones , Interleucina-10 , Semen , Motilidad Espermática , Espermatozoides/patología , Vacunación , Proteínas de la Membrana Bacteriana Externa
2.
Biol Reprod ; 106(3): 503-514, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-34673933

RESUMEN

The dormant population of ovarian primordial follicles is determined at birth and serves as the reservoir for future female fertility. Yet our understanding of the molecular, biochemical, and cellular processes underpinning primordial follicle activation remains limited. The survival of primordial follicles relies on the correct complement and morphology of granulosa cells, which provide signaling factors essential for oocyte and follicular survival. To investigate the contribution of granulosa cells in the primordial-to-primary follicle transition, gene expression profiles of granulosa cells undergoing early differentiation were assessed in a murine model. Ovaries from C57Bl/6 mice were enzymatically dissociated at time-points spanning the initial wave of primordial follicle activation. Post-natal day (PND) 1 ovaries yielded primordial granulosa cells, and PND4 ovaries yielded a mixed population of primordial and primary granulosa cells. The comparative transcriptome of granulosa cells at these time-points was generated via Illumina NextSeq 500 system, which identified 131 significantly differentially expressed transcripts. The differential expression of eight of the transcripts was confirmed by RT-qPCR. Following biological network mapping via Ingenuity Pathway Analysis, the functional expression of the protein products of three of the differentially expressed genes, namely FRZB, POD1, and ZFX, was investigated with in-situ immunolocalization in PND4 mouse ovaries was investigated. Finally, evidence was provided that Wnt pathway antagonist, secreted frizzled-related protein 3 (FRZB), interacts with a suppressor of primordial follicle activation WNT3A and may be involved in promoting primordial follicle activation. This study highlights the dynamic changes in gene expression of granulosa cells during primordial follicle activation and provides evidence for a renewed focus into the Wnt signaling pathway's role in primordial follicle activation.


Asunto(s)
Folículo Ovárico , Transcriptoma , Animales , Animales Recién Nacidos , Femenino , Células de la Granulosa/metabolismo , Ratones , Oocitos/fisiología , Folículo Ovárico/metabolismo
3.
Reproduction ; 163(3): 167-182, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35084365

RESUMEN

Polycomb repressive complex 2 (PRC2) catalyses the repressive epigenetic modification of histone 3 lysine 27 tri-methylation (H3K27me3) and functions as a key epigenetic regulator during embryonic development. PRC2 is known to regulate the development of a range of tissues by transcriptional silencing of genes that control cell differentiation, but its roles in female germline and ovarian development remain unknown. Using a mouse model with hypomorphic embryonic ectoderm development (EED) function that reduced H3K27me3 in somatic and germ cells, we found that PRC2 was required for survival, with more than 95% of female animals dying before birth. Although surviving adult EED hypomorphic females appeared morphologically similar to controls and were fertile, Eedhypo/hypo adult ovaries were abnormal, with altered morphology characterised by abnormal follicles. Early Eedhypo/hypo and control fetal ovaries were morphologically similar, and germ cells entered meiosis normally. Immunofluorescent analyses of somatic and germline markers indicated that ovarian development in Eedhypo/hypo ovaries was similar to heterozygous and WT controls. However, TUNEL analyses revealed higher rates of apoptosis in the ovarian surface epithelium, and transcriptional analyses revealed changes in genes regulating epithelial and steroidogenic cell differentiation, possibly foreshadowing the defects observed in adult ovaries of hypomorphic females. While it was possible to analyse early-mid fetal ovarian development, postnatal stages were inaccessible due to the high level of lethality during late fetal stages. Despite this limitation, the data we were able to obtain reveal a novel role for EED in the ovary that is likely to alter ovarian development and ovarian function in adult animals.


Asunto(s)
Ovario , Complejo Represivo Polycomb 2 , Animales , Diferenciación Celular/genética , Femenino , Histonas/metabolismo , Metilación , Ratones , Ovario/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
4.
FASEB J ; 34(4): 5162-5177, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32065700

RESUMEN

During folliculogenesis, oocytes are dependent on metabolic and molecular support from surrounding somatic cells. Here, we examined the role of the dynamin (DNM) family of mechanoenzymes in mediating endocytotic uptake into growing follicular oocytes. We found DNM1 and DNM2 to be highly expressed in growing follicular oocytes as well as in mature germinal vesicle (GV) and metaphase II (MII) stage oocytes. Moreover, oocyte-specific conditional knockout (cKO) of DNM2 (DNM2Δ) led to complete sterility, with follicles arresting at the preantral stage of development. In addition, DNM2Δ ovaries were characterized by disrupted follicular growth as well as oocyte and follicle apoptosis. Further, the loss of DNM activity, either through DNM2 cKO or through pharmacological inhibition (Dyngo 6a) led to the impairment of endocytotic pathways in preantral oocytes as well as in mature GV and MII oocytes, respectively. Loss of DNM activity resulted in the redistribution of endosomes and the misslocalization of clathrin and actin, suggesting dysfunctional endocytosis. Notably, there was no observable effect on the fertility of DNM1Δ females. Our study has provided new insight into the complex and dynamic nature of oocyte growth during folliculogenesis, suggesting a role for DNM2 in mediating the endocytotic events that are essential for oocyte development.


Asunto(s)
Dinamina II/fisiología , Dinamina I/fisiología , Endocitosis , Fertilidad , Oocitos/citología , Folículo Ovárico/citología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oocitos/fisiología , Folículo Ovárico/fisiología
5.
Biol Reprod ; 102(4): 888-901, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31965142

RESUMEN

With approximately 131 million new genital tract infections occurring each year, Chlamydia is the most common sexually transmitted bacterial pathogen worldwide. Male and female infections occur at similar rates and both cause serious pathological sequelae. Despite this, the impact of chlamydial infection on male fertility has long been debated, and the effects of paternal chlamydial infection on offspring development are unknown. Using a male mouse chronic infection model, we show that chlamydial infection persists in the testes, adversely affecting the testicular environment. Infection increased leukocyte infiltration, disrupted the blood:testis barrier and reduced spermiogenic cell numbers and seminiferous tubule volume. Sperm from infected mice had decreased motility, increased abnormal morphology, decreased zona-binding capacity, and increased DNA damage. Serum anti-sperm antibodies were also increased. When both acutely and chronically infected male mice were bred with healthy female mice, 16.7% of pups displayed developmental abnormalities. Female offspring of chronically infected sires had smaller reproductive tracts than offspring of noninfected sires. The male pups of infected sires displayed delayed testicular development, with abnormalities in sperm vitality, motility, and sperm-oocyte binding evident at sexual maturity. These data suggest that chronic testicular Chlamydia infection can contribute to male infertility, which may have an intergenerational impact on sperm quality.


Asunto(s)
Infecciones por Chlamydia/microbiología , Chlamydia muridarum , Fertilidad/fisiología , Infertilidad Masculina/microbiología , Efectos Tardíos de la Exposición Prenatal/microbiología , Testículo/microbiología , Animales , Femenino , Masculino , Ratones , Embarazo , Motilidad Espermática/fisiología
6.
Reproduction ; 159(1): R15-R29, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31376814

RESUMEN

In women, the non-growing population of follicles that comprise the ovarian reserve is determined at birth and serves as the reservoir for future fertility. This reserve of dormant, primordial follicles and the mechanisms controlling their selective activation which constitute the committing step into folliculogenesis are essential for determining fertility outcomes in women. Much of the available data on the mechanisms responsible for primordial follicle activation focuses on a selection of key molecular pathways, studied primarily in animal models, with findings often not synonymous in humans. The excessive induction of primordial follicle activation may cause the development of premature ovarian insufficiency (POI), a condition characterised by menopause before age 40 years. POI affects 1-2% of all women and is accompanied by additional health risks. Therefore, it is critical to further our understanding of primordial follicle activation in order to diagnose, treat and prevent premature infertility. Research in primordial follicle activation has focused on connecting new molecules to already established key signalling pathways, such as phosphatidylinositol 3-Kinase (PI3K) and mammalian target of rapamycin (mTOR). Additionally, other aspects of the ovarian environment, such as the function of the extracellular matrix, in contributing to primordial follicle activation have gained traction. Clinical applications are examining replication of this extracellular environment through the construction of biological matrices mimicking the 3D ovary, to support follicular growth through to ovulation. This review outlines the importance of the events leading to the establishment of the ovarian reserve and highlights the fundamental factors known to influence primordial follicle activation in humans presenting new horizons for female infertility treatment.


Asunto(s)
Infertilidad Femenina/prevención & control , Oocitos/fisiología , Folículo Ovárico/fisiología , Insuficiencia Ovárica Primaria/terapia , Femenino , Preservación de la Fertilidad , Humanos , Oocitos/citología , Folículo Ovárico/citología
7.
BMC Womens Health ; 20(1): 45, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131809

RESUMEN

BACKGROUND: Previous studies have identified that women living in developed countries have insufficient knowledge of factors which may be contributing to the increasingly high global infertility rates such as maternal age and assisted reproductive technologies. There is a large market of reproductive health smartphone applications, yet little is known about the advantages these apps may confer to users in regards to reproductive health knowledge. METHODS: An anonymous, online survey of women living in Australia aged 18 and above was open March-June 2018, until ≥200 responses were acquired for statistical power. Respondents answered questions regarding knowledge about general fertility and related factors (age, cyclic fertility, smoking, obesity, miscarriage rate, and success of assisted reproductive technologies). Fertility knowledge was compared in respondents who did or did not use apps relating to female reproductive health. Additionally the functions preferred in reproductive health apps was described by app using respondents. Sociodemographic information was also collected, and relevant data within the dataset was subject to multivariable modelling for the outcome of the fertility knowledge questions. RESULTS: Of the 673 respondents that completed the survey, 43.09% reported using mobile phone applications relating to female reproductive health. On average, respondents answered only three of the six fertility knowledge questions correctly. App using respondents were more likely to score better on one question, related to fertility during the menstrual cycle (p < 0.001). App users most commonly reported using the menstrual tracking function in apps (82.4%), which may account for the increased knowledge of cyclic fertility. CONCLUSIONS: This data provides preliminary evidence toward the usefulness of smartphone applications as a medium for providing information about fertility to women. A limited understanding of one's own fertility was demonstrated despite being essential for the decision-making of women throughout their reproductive years.


Asunto(s)
Fertilidad , Conocimientos, Actitudes y Práctica en Salud , Aplicaciones Móviles , Salud Reproductiva , Teléfono Inteligente , Adolescente , Adulto , Australia , Femenino , Humanos , Infertilidad Femenina , Adulto Joven
8.
BMC Biol ; 17(1): 35, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30999907

RESUMEN

BACKGROUND: The mammalian epididymis is responsible for the provision of a highly specialized environment in which spermatozoa acquire functional maturity and are subsequently stored in preparation for ejaculation. Making important contributions to both processes are epididymosomes, small extracellular vesicles released from the epididymal soma via an apocrine secretory pathway. While considerable effort has been focused on defining the cargo transferred between epididymosomes and spermatozoa, comparatively less is known about the mechanistic basis of these interactions. To investigate this phenomenon, we have utilized an in vitro co-culture system to track the transfer of biotinylated protein cargo between mouse epididymosomes and recipient spermatozoa isolated from the caput epididymis; an epididymal segment that is of critical importance for promoting sperm maturation. RESULTS: Our data indicate that epididymosome-sperm interactions are initiated via tethering of the epididymosome to receptors restricted to the post-acrosomal domain of the sperm head. Thereafter, epididymosomes mediate the transfer of protein cargo to spermatozoa via a process that is dependent on dynamin, a family of mechanoenzymes that direct intercellular vesicle trafficking. Notably, upon co-culture of sperm with epididymosomes, dynamin 1 undergoes a pronounced relocation between the peri- and post-acrosomal domains of the sperm head. This repositioning of dynamin 1 is potentially mediated via its association with membrane rafts and ideally locates the enzyme to facilitate the uptake of epididymosome-borne proteins. Accordingly, disruption of membrane raft integrity or pharmacological inhibition of dynamin both potently suppress the transfer of biotinylated epididymosome proteins to spermatozoa. CONCLUSION: Together, these data provide new mechanistic insight into epididymosome-sperm interactions with potential implications extending to the manipulation of sperm maturation for the purpose of fertility regulation.


Asunto(s)
Epidídimo/fisiología , Espermatozoides/fisiología , Animales , Masculino , Ratones , Maduración del Esperma
9.
J Biol Chem ; 293(49): 18944-18964, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30305393

RESUMEN

An increase in oxidative protein damage is a leading contributor to the age-associated decline in oocyte quality. By removing such damaged proteins, the proteasome plays an essential role in maintaining the fidelity of oocyte meiosis. In this study, we established that decreased proteasome activity in naturally aged, germinal vesicle (GV) mouse oocytes positively correlates with increased protein modification by the lipid aldehyde 4-hydroxynonenal (4-HNE). Furthermore, attenuation of proteasome activity in GV oocytes of young animals was accompanied by an increase in 4-HNE-modified proteins, including α-tubulin, thereby contributing to a reduction in tubulin polymerization, microtubule stability, and integrity of oocyte meiosis. A decrease in proteasome activity was also recapitulated in the GV oocytes of young animals following exposure to oxidative insults in the form of either hydrogen peroxide (H2O2) or 4-HNE. We also observed that upon oxidative insult, 4-HNE exhibits elevated adduction to multiple proteasomal subunits. Notably, the inclusion of the antioxidant penicillamine, to limit propagation of oxidative stress cascades, led to a complete recovery of proteasome activity and enhanced clearance of 4-HNE-adducted α-tubulin during a 6-h post-treatment recovery period. This strategy also proved effective in reducing the incidence of oxidative stress-induced aneuploidy following in vitro oocyte maturation, but was ineffective for naturally aged oocytes. Taken together, our results implicate proteasome dysfunction as an important factor in the accumulation of oxidatively induced protein damage in the female germline. This discovery holds promise for the design of therapeutic interventions to address the age-dependent decline in oocyte quality.


Asunto(s)
Aldehídos/metabolismo , Oocitos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Aneuploidia , Animales , Femenino , Peróxido de Hidrógeno/metabolismo , Ratones Endogámicos C57BL , Oocitos/fisiología , Oxidación-Reducción , Estrés Oxidativo/fisiología , Penicilamina/farmacología , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/metabolismo
10.
Biol Reprod ; 101(4): 748-759, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31373361

RESUMEN

The incidence of Chlamydia infection, in both females and males, is increasing worldwide. Male infections have been associated clinically with urethritis, epididymitis, and orchitis, believed to be caused by ascending infection, although the impact of infection on male fertility remains controversial. Using a mouse model of male chlamydial infection, we show that all the major testicular cell populations, germ cells, Sertoli cells, Leydig cells, and testicular macrophages can be productively infected. Furthermore, sperm isolated from vas deferens of infected mice also had increased levels of DNA damage as early as 4 weeks post-infection. Bilateral vasectomy, prior to infection, did not affect the chlamydial load recovered from testes at 2, 4, and 8 weeks post-infection, and Chlamydia-infected macrophages were detectable in blood and the testes as soon as 3 days post-infection. Partial depletion of macrophages with clodronate liposomes significantly reduced the testicular chlamydial burden, consistent with a hematogenous route of infection, with Chlamydia transported to the testes in infected macrophages. These data suggest that macrophages serve as Trojan horses, transporting Chlamydia from the penile urethra to the testes within 3 days of infection, bypassing the entire male reproductive tract. In the testes, infected macrophages likely transfer infection to Leydig, Sertoli, and germ cells, causing sperm DNA damage and impaired spermatogenesis.


Asunto(s)
Infecciones por Chlamydia/complicaciones , Chlamydia muridarum/fisiología , Infertilidad Masculina , Macrófagos/microbiología , Testículo/microbiología , Uretra/microbiología , Animales , Células Cultivadas , Infecciones por Chlamydia/genética , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/patología , Chlamydia muridarum/genética , Daño del ADN , Infertilidad Masculina/genética , Infertilidad Masculina/microbiología , Infertilidad Masculina/patología , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Orquitis/complicaciones , Orquitis/microbiología , Orquitis/patología , Organismos Modificados Genéticamente , Espermatozoides/metabolismo , Espermatozoides/microbiología , Testículo/patología , Uretra/patología
11.
Mol Hum Reprod ; 25(5): 241-256, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30865280

RESUMEN

Oxidative stress is a major aetiology in many pathologies, including that of male infertility. Recent evidence in somatic cells has linked oxidative stress to the induction of a novel cell death modality termed ferroptosis. However, the induction of this iron-regulated, caspase-independent cell death pathway has never been explored outside of the soma. Ferroptosis is initiated through the inactivation of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and is exacerbated by the activity of arachidonate 15-lipoxygenase (ALOX15), a lipoxygenase enzyme that facilitates lipid degradation. Here, we demonstrate that male germ cells of the mouse exhibit hallmarks of ferroptosis including; a caspase-independent decline in viability following exposure to oxidative stress conditions induced by the electrophile 4-hydroxynonenal or the ferroptosis activators (erastin and RSL3), as well as a reciprocal upregulation of ALOX15 and down regulation of GPX4 protein expression. Moreover, the round spermatid developmental stage may be sensitized to ferroptosis via the action of acyl-CoA synthetase long-chain family member 4 (ACSL4), which modifies membrane lipid composition in a manner favourable to lipid peroxidation. This work provides a clear impetus to explore the contribution of ferroptosis to the demise of germline cells during periods of acute stress in in vivo models.


Asunto(s)
Ferroptosis/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Oxidantes/farmacología , Espermátides/efectos de los fármacos , Aldehídos/antagonistas & inhibidores , Aldehídos/farmacología , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Carbolinas/antagonistas & inhibidores , Carbolinas/farmacología , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Ciclohexilaminas/farmacología , Deferoxamina/farmacología , Ferroptosis/genética , Humanos , Infertilidad/genética , Masculino , Ratones , Estrés Oxidativo , Fenilendiaminas/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Piperazinas/antagonistas & inhibidores , Piperazinas/farmacología , Cultivo Primario de Células , Espermátides/citología , Espermátides/metabolismo , Testículo/citología , Testículo/efectos de los fármacos , Testículo/metabolismo
12.
Hum Reprod ; 34(10): 1891-1898, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31586185

RESUMEN

STUDY QUESTION: Can Chlamydia be found in the testes of infertile men? SUMMARY ANSWER: Chlamydia can be found in 16.7% of fresh testicular biopsies and 45.3% of fixed testicular biopsies taken from a selection of infertile men. WHAT IS KNOWN ALREADY: Male chlamydial infection has been understudied despite male and female infections occurring at similar rates. This is particularly true of asymptomatic infections, which occur in 50% of cases. Chlamydial infection has also been associated with increased sperm DNA damage and reduced male fertility. STUDY DESIGN, SIZE, DURATION: We collected diagnostic (fixed, n = 100) and therapeutic (fresh, n = 18) human testicular biopsies during sperm recovery procedures from moderately to severely infertile men in a cross-sectional approach to sampling. PARTICIPANTS/MATERIALS, SETTING, METHODS: The diagnostic and therapeutic biopsies were tested for Chlamydia-specific DNA and protein, using real-time PCR and immunohistochemical approaches, respectively. Serum samples matched to the fresh biopsies were also assayed for the presence of Chlamydia-specific antibodies using immunoblotting techniques. MAIN RESULTS AND THE ROLE OF CHANCE: Chlamydial major outer membrane protein was detected in fixed biopsies at a rate of 45.3%. This was confirmed by detection of chlamydial DNA and TC0500 protein (replication marker). C. trachomatis DNA was detected in fresh biopsies at a rate of 16.7%, and the sera from each of these three positive patients contained C. trachomatis-specific antibodies. Overall, C. trachomatis-specific antibodies were detected in 72.2% of the serum samples from the patients providing fresh biopsies, although none of the patients were symptomatic nor had they reported a previous sexually transmitted infection diagnosis including Chlamydia. LIMITATIONS, REASONS FOR CAUTION: No reproductively healthy male testicular biopsies were tested for the presence of Chlamydia DNA or proteins or Chlamydia-specific antibodies due to the unavailability of these samples. WIDER IMPLICATIONS FOR THE FINDINGS: Application of Chlamydia-specific PCR and immunohistochemistry in this human male infertility context of testicular biopsies reveals evidence of a high prevalence of previously unrecognised infection, which may potentially have a pathogenic role in spermatogenic failure. STUDY FUNDING/COMPETING INTEREST(S): Funding for this project was provided by the Australian NHMRC under project grant number APP1062198. We also acknowledge assistance from the Monash IVF Group and Queensland Fertility Group in the collection of fresh biopsies, and the Monash Health and co-author McLachlan (declared equity interest) in retrieval and sectioning of fixed biopsies. E.M. declares an equity interest in the study due to financing of fixed biopsy sectioning. All other authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Azoospermia/microbiología , Infecciones por Chlamydia/diagnóstico , Chlamydia trachomatis/aislamiento & purificación , Testículo/microbiología , Infecciones Asintomáticas , Azoospermia/diagnóstico , Azoospermia/patología , Azoospermia/terapia , Infecciones por Chlamydia/complicaciones , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/patología , Chlamydia trachomatis/genética , Estudios Transversales , ADN Bacteriano/aislamiento & purificación , Humanos , Masculino , Recuperación de la Esperma , Testículo/patología
13.
J Cell Physiol ; 233(4): 3262-3273, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28884822

RESUMEN

RNA-binding proteins (RBP) are important facilitators of post-transcriptional gene regulation. We have previously established that nuclear overexpression of the RBP Musashi-2 (MSI2) during male germ cell maturation is detrimental to sperm cell development and fertility. Herein we determine the genes and pathways impacted by the upregulation of Msi2. Microarray analysis and qPCR confirmed differential gene expression in factors fundamental to the cell cycle, cellular proliferation, and cell death. Similarly, comparative protein expression analysis via iTRAQ, immunoblot, and immunolocalization, identified differential expression and localization of important regulators of transcription, translation, RNA processing, and spermatogenesis. Specifically, the testis-expressed transcription factor, Tbx1, and the piRNA regulator of gamete development, Piwil1, were both found to be targeted for translational repression by MSI2. This study provides key evidence to support a fundamental role for MSI2 in post-transcriptional regulation during male gamete development.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas de Unión al ARN/metabolismo , Espermatogénesis , Proteínas de Dominio T Box/metabolismo , Animales , Proteínas Argonautas/genética , Regulación de la Expresión Génica , Masculino , Ratones Transgénicos , Modelos Biológicos , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Espermátides/metabolismo , Espermatogénesis/genética , Proteínas de Dominio T Box/genética
14.
Biol Reprod ; 98(6): 784-794, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29546268

RESUMEN

One of the leading causes of male infertility is defective sperm function, a pathology that commonly arises from oxidative stress in the germline. Lipid peroxidation events in the sperm plasma membrane result in the generation of cytotoxic aldehydes such as 4-hydroxynonenal (4HNE), which accentuate the production of reactive oxygen species (ROS) and cause cellular damage. One of the key enzymes involved in the metabolism of polyunsaturated fatty acids to 4HNE in somatic cells is arachidonate 15-lipoxygenase (ALOX15). Although ALOX15 has yet to be characterized in human spermatozoa, our previous studies have revealed a strong link between ALOX15 activity and the levels of oxidative stress and 4HNE in mouse germ cell models. In view of these data, we sought to assess the function of ALOX15 in mature human spermatozoa and determine whether the pharmacological inhibition of this enzyme could influence the level of oxidative stress experienced by these cells. By driving oxidative stress in vitro with exogenous H2O2, our data reveal that 6,11-dihydro[1]benzothiopyrano[4,3-b]indole (PD146176; a selective ALOX15 inhibitor) was able to significantly reduce several deleterious, oxidative insults in spermatozoa. Indeed, PD146176 attenuated the production of ROS, as well as membrane lipid peroxidation and 4HNE production in human spermatozoa. Accordingly, ALOX15 inhibition also protected the functional competence of these cells to acrosome react and bind homologous human zonae pellucidae. Together, these results implicate ALOX15 in the propagation of oxidative stress cascades within human spermatozoa and offer insight into potential therapeutic avenues to address male in fertility that arises from oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Peroxidación de Lípido/efectos de los fármacos , Inhibidores de la Lipooxigenasa/farmacología , Estrés Oxidativo/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Araquidonato 15-Lipooxigenasa/metabolismo , Fluorenos/farmacología , Humanos , Masculino , Especies Reactivas de Oxígeno/metabolismo , Interacciones Espermatozoide-Óvulo/fisiología , Espermatozoides/metabolismo , Zona Pelúcida/metabolismo
15.
Mol Hum Reprod ; 24(11): 533-542, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30247637

RESUMEN

STUDY QUESTION: Is the Janus kinase and signal transducer and activator of transcription (JAK-STAT) signalling pathway involved in ovarian follicle development and primordial follicle activation? SUMMARY ANSWER: JAK1 is a key factor involved in the regulation of primordial follicle activation and maintenance of the ovarian reserve. WHAT IS KNOWN ALREADY: A series of integrated, intrinsic signalling pathways (including PI3K/AKT, mTOR and KITL) are responsible for regulating the ovarian reserve of non-growing primordial follicles and ultimately female fertility. The JAK-STAT signal transduction pathway is highly conserved with established roles in cell division and differentiation. Key pathway members (specifically JAK1, STAT3 and SOCS4) have been previously implicated in early follicle development. STUDY DESIGN, SIZE, DURATION: A laboratory animal study was undertaken using the C57Bl/6 inbred mouse strain as a model for human ovarian follicle development. To determine which Jak genes were most abundantly expressed during primordial follicle activation, mRNA expression was analysed across a developmental time-course, with ovaries collected from female mice at post-natal days 1 (PND1), 4 (PND4), 8 (PND8), as well as at 6 weeks (6WK) and 7 months (7MTH) (n ≥ 4). Functional analysis of JAK1 was performed on PND2 mouse ovaries subjected to in vitro explant culture treated with 12.5 µM Ruxolitinib (JAK inhibitor) or vehicle control (DMSO) for 48 h prior to histological assessment (n ≥ 4). PARTICIPANTS/MATERIALS, SETTING, METHODS: The expression and localization of the JAK family during ovarian follicle development in the C57Bl/6 inbred mouse strain were evaluated using quantitative PCR, immunoblotting and immunolocalisation. Functional studies were undertaken using the JAK inhibitor Ruxolitinib to investigate the underpinning cellular mechanisms via biochemical in vitro inhibition and histological assessment of intact neonate ovaries. All experiments were replicated at least three times using tissue from different mice unless otherwise stated. MAIN RESULTS AND THE ROLE OF CHANCE: Jak1 is the predominant Jak mRNA expressed in the C57Bl/6 mouse ovary across all developmental time-points assessed (P ≤ 0.05). Forty-eight hour inhibition of JAK1 with Ruxolitinib of PND2 ovaries in vitro demonstrated concomitant acceleration of primordial follicle activation and apoptosis (P ≤ 0.001) and upregulation of downstream JAK-STAT pathway members STAT3 and suppressors of cytokine signalling 4 (SOCS4). LARGE-SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Results are shown in one species, the C57Bl/6 mouse strain as an established model of human ovary development. Ruxolitinib also inhibits JAK2, with decreased efficacy. However, Jak2 mRNA had limited expression in the mouse ovary, particularly at the neonatal stages of follicle development, thus any effect of Ruxolitinib on primordial follicle activation was unlikely to be mediated via this isoform. WIDER IMPLICATIONS OF THE FINDINGS: This study supports a key role for JAK1 in the maintenance and activation of primordial follicles, with potential for targeting the JAK-STAT pathway as a method of regulating the ovarian reserve and female fertility. STUDY FUNDING AND COMPETING INTEREST(S): This project has been funded by the Australian National Health and Medical Research Council (G1600095) and The Hunter Medical Research Institute Bob and Terry Kennedy Children's Research Project Grant in Pregnancy & Reproduction (G1501433). All authors declare no conflict of interests.


Asunto(s)
Janus Quinasa 1/metabolismo , Folículo Ovárico/citología , Folículo Ovárico/metabolismo , Reserva Ovárica/fisiología , Ovario/citología , Ovario/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Femenino , Janus Quinasa 1/genética , Ratones , Ratones Endogámicos C57BL , Reserva Ovárica/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
16.
Reprod Fertil Dev ; 30(4): 624-633, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28945982

RESUMEN

The mare ovary is unique in its anatomical structure; however, the signalling pathways responsible for physiological processes, such as follicular activation, remain uncharacterised. This provided us with the impetus to explore whether signalling molecules from important folliculogenesis pathways, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT), are conserved in the mare ovary. Messenger RNA expression of six genes important in follicle development was measured using quantitative polymerase chain reaction and protein localisation of key pathway members (PI3K, AKT1, phosphatase and tensin homologue (PTEN), JAK1, STAT3 and suppressor of cytokine signalling 4 (SOCS4)) was compared in tissue from fetal and adult mare ovaries. Tissue from adult ovaries exhibited significantly increased levels of mRNA expression of PI3K, AKT1, PTEN, JAK1, STAT3 and SOCS4 compared with tissue from fetal ovaries. PI3K, AKT1, JAK1 and STAT3 demonstrated redistributed localisation, from pregranulosa cells in fetal development, to both the oocyte and granulosa cells of follicles in the adult ovary, whilst negative feedback molecules PTEN and SOCS4 were only localised to the granulosa cells in the adult ovary. These findings suggest that the PI3K/AKT and JAK/STAT signalling pathways are utilised during folliculogenesis in the mare, similarly to previously studied mammalian species, and may serve as useful biomarkers for assessment of ovary development in the horse.


Asunto(s)
Quinasas Janus/metabolismo , Folículo Ovárico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/fisiología , Animales , Femenino , Caballos , Ovario/metabolismo , Fosforilación
17.
Development ; 141(6): 1354-65, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24553289

RESUMEN

Fizzy-related 1 (FZR1) is an activator of the Anaphase promoting complex/cyclosome (APC/C) and an important regulator of the mitotic cell division cycle. Using a germ-cell-specific conditional knockout model we examined its role in entry into meiosis and early meiotic events in both sexes. Loss of APC/C(FZR1) activity in the male germline led to both a mitotic and a meiotic testicular defect resulting in infertility due to the absence of mature spermatozoa. Spermatogonia in the prepubertal testes of such mice had abnormal proliferation and delayed entry into meiosis. Although early recombination events were initiated, male germ cells failed to progress beyond zygotene and underwent apoptosis. Loss of APC/C(FZR1) activity was associated with raised cyclin B1 levels, suggesting that CDK1 may trigger apoptosis. By contrast, female FZR1Δ mice were subfertile, with premature onset of ovarian failure by 5 months of age. Germ cell loss occurred embryonically in the ovary, around the time of the zygotene-pachytene transition, similar to that observed in males. In addition, the transition of primordial follicles into the growing follicle pool in the neonatal ovary was abnormal, such that the primordial follicles were prematurely depleted. We conclude that APC/C(FZR1) is an essential regulator of spermatogonial proliferation and early meiotic prophase I in both male and female germ cells and is therefore important in establishing the reproductive health of adult male and female mammals.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdh1/metabolismo , Animales , Proteínas Cdh1/deficiencia , Proteínas Cdh1/genética , Ciclina B1/metabolismo , Roturas del ADN de Doble Cadena , Femenino , Regulación del Desarrollo de la Expresión Génica , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Profase Meiótica I/genética , Profase Meiótica I/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oogénesis/genética , Oogénesis/fisiología , Ovario/metabolismo , Ovario/patología , Embarazo , Caracteres Sexuales , Espermatogénesis/genética , Espermatogénesis/fisiología , Espermatogonias/citología , Espermatogonias/metabolismo , Testículo/metabolismo , Testículo/patología
18.
Biol Reprod ; 97(5): 719-730, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040417

RESUMEN

Normal ovarian development is crucial for female reproductive success and longevity. Interruptions to the delicate process of initial folliculogenesis may lead to ovarian dysfunction. We have previously demonstrated that an early life immune challenge in the rat, induced by administration of lipopolysaccharide (LPS) on postnatal day (PND) 3 and 5, depletes ovarian follicle reserve long term. Here, we hypothesized that this neonatal immune challenge leads to an increase in peripheral and ovarian inflammatory signaling, contributing to an acute depletion of ovarian follicles. Morphological analysis of neonatal ovaries indicated that LPS administration significantly depleted PND 5 primordial follicle populations and accelerated follicle maturation. LPS exposure upregulated circulating interleukin 6, tumor necrosis factor alpha (TNFa), and C-reactive protein on PND 5, and upregulated ovarian mRNA expression of Tnfa, mitogen-activated protein kinase 8 (Mapk8/Jnk1), and growth differentiation factor 9 (Gdf9) (P < 0.05). Mass spectrometry and cell signaling pathway analysis indicated upregulation of cellular pathways associated with acute phase signaling, and cellular survival and assembly. Apoptosis assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling indicated significantly increased positive staining in the ovaries of LPS-treated neonates. These findings suggest that increased proinflammatory signaling within the neonatal ovary may be responsible for the LPS-induced depletion of the primordial follicle pool. These findings also have implications for female reproductive health, as the ovarian reserve is a major determinate of female reproductive longevity.


Asunto(s)
Citocinas/metabolismo , Folículo Ovárico/fisiología , Ovario/metabolismo , Animales , Animales Recién Nacidos , Citocinas/genética , Femenino , Lipopolisacáridos/toxicidad , Ovario/efectos de los fármacos , Ratas , Ratas Wistar
19.
Biol Reprod ; 96(3): 598-609, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339608

RESUMEN

Lipid peroxidation products, such as 4-hydroxynonenal (4HNE), are causative agents responsible for extensive protein damage within the male and female germlines. Recently, we have demonstrated that 4HNE production can initiate the proteolytic degradation of the molecular chaperone Heat Shock Protein A2 (HSPA2) in male germ cells. These events may be partially responsible for HSPA2 deficiency in the spermatozoa of patients that repeatedly fail in vitro fertilization. Given this, mechanisms that limit the production of 4HNE will be highly advantageous for the preservation of male fertility. The propagation of 4HNE in somatic cells has been linked to the enzymatic actions of arachidonate 15-lipoxygenase (ALOX15), a member of the lipoxygenase family of proteins. In view of this association, this study sought to explore ALOX15 as a physiological target to manipulate the levels of 4HNE produced in the male germline. Herein, we have demonstrated that ALOX15 is markedly upregulated in response to oxidative stress in round spermatids and the GC-2 cell line. Pharmacological inhibition of ALOX15 in GC-2 cells resulted in a significant reduction in both mitochondrial and cytoplasmic reactive oxygen species, as well as a dramatic reduction in 4HNE. Importantly, the reduced bioavailability of this aldehyde appears to confer positive downstream effects to its target proteins such that HSPA2 could be protected from damage by 4HNE. Taken together, these results suggest that the actions of ALOX15 are intimately tied to the production of 4HNE. Thus, the ALOX15 protein may be a promising new target for the mitigation of germline oxidative stress.


Asunto(s)
Aldehídos/metabolismo , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Espermatozoides/metabolismo , Animales , Línea Celular , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Masculino , Ratones , Estrés Oxidativo
20.
Biol Reprod ; 96(1): 159-173, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28395327

RESUMEN

The mammalian epididymis is an exceptionally long ductal system tasked with the provision of one of the most complex intraluminal fluids found in any exocrine gland. This specialized milieu is continuously modified by the combined secretory and absorptive of the surrounding epithelium and thus finely tuned for its essential roles in promoting sperm maturation and storage. While considerable effort has been focused on defining the composition of the epididymal fluid, relatively less is known about the intracellular trafficking machinery that regulates this luminal environment. Here, we characterize the ontogeny of expression of a master regulator of this machinery, the dynamin family of mechanoenzymes. Our data show that canonical dynamin isoforms were abundantly expressed in the juvenile mouse epididymis. However, in peripubertal and adult animals dynamin takes on a heterogeneous pattern of expression such that the different isoforms displayed both cell- and segment-specific localization. Thus, dynamin 1 and 3 were predominately localized in the distal epididymal segments (corpus and cauda), where they were found within clear and principal cells, respectively. In contrast, dynamin 2 was expressed throughout the epididymis, but localized to the Golgi apparatus of the principal cells in the proximal (caput) segment and the luminal border of these cells in more distal segments. These dynamin isoforms are therefore ideally positioned to play complementary, nonredundant roles in the regulation of the epididymal milieu. In support of this hypothesis, selective inhibition of dynamin altered the profile of proteins secreted from an immortalized caput epididymal cell line.


Asunto(s)
Dinaminas/metabolismo , Epidídimo/metabolismo , Animales , Epidídimo/crecimiento & desarrollo , Masculino , Ratones , ATPasas de Translocación de Protón Vacuolares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA