Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L393-L408, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261720

RESUMEN

Quantifying airway smooth muscle (ASM) in patients with asthma raises the possibility of improved and personalized disease management. Endobronchial polarization-sensitive optical coherence tomography (PS-OCT) is a promising quantitative imaging approach that is in the early stages of clinical translation. To date, only animal tissues have been used to assess the accuracy of PS-OCT to quantify absolute (rather than relative) ASM in cross sections with directly matched histological cross sections as validation. We report the use of whole fresh human and pig airways to perform a detailed side-by-side qualitative and quantitative validation of PS-OCT against gold-standard histology. We matched and quantified 120 sections from five human and seven pig (small and large) airways and linked PS-OCT signatures of ASM to the tissue structural appearance in histology. Notably, we found that human cartilage perichondrium can share with ASM the properties of birefringence and circumferential alignment of fibers, making it a significant confounder for ASM detection. Measurements not corrected for perichondrium overestimated ASM content several-fold (P < 0.001, paired t test). After careful exclusion of perichondrium, we found a strong positive correlation (r = 0.96, P < 0.00001) of ASM area measured by PS-OCT and histology, supporting the method's application in human subjects. Matching human histology further indicated that PS-OCT allows conclusions on the intralayer composition and in turn potential contractile capacity of ASM bands. Together these results form a reliable basis for future clinical studies.NEW & NOTEWORTHY Polarization-sensitive optical coherence tomography (PS-OCT) may facilitate in vivo measurement of airway smooth muscle (ASM). We present a quantitative validation correlating absolute ASM area from PS-OCT to directly matched histological cross sections using human tissue. A major confounder for ASM quantification was observed and resolved: fibrous perichondrium surrounding hyaline cartilage in human airways presents a PS-OCT signature similar to ASM for birefringence and optic axis orientation. Findings impact the development of automated methods for ASM segmentation.


Asunto(s)
Asma , Tomografía de Coherencia Óptica , Humanos , Porcinos , Animales , Tomografía de Coherencia Óptica/métodos , Sistema Respiratorio , Cartílago , Músculo Liso/diagnóstico por imagen
2.
J Physiol ; 600(17): 3921-3929, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35869823

RESUMEN

Heart failure (HF) is characterised by abnormal conduit and resistance artery function in humans. Microvascular function in HF is less well characterised, due in part to the lack of tools to image these vessels in vivo. The skin microvasculature is a surrogate for systemic microvascular function and health and plays a key role in thermoregulation, which is dysfunctional in HF. We deployed a novel optical coherence tomography (OCT) technique to visualise and quantify microvascular structure and function in 10 subjects with HF and 10 age- and sex-matched controls. OCT images were obtained from the ventral aspect of the forearm, at baseline (33°C) and after 30 min of localised skin heating. At rest, OCT-derived microvascular density (20.3 ± 8.7%, P = 0.004), diameter (35.1 ± 6.0 µm, P = 0.006) and blood flow (82.9 ± 41.1 pl/s, P = 0.021) were significantly lower in HF than CON (27.2 ± 8.0%, 40.4 ± 5.8 µm, 110.8 ± 41.9 pl/s), whilst blood speed was not significantly lower (74.3 ± 11.0 µm/s vs. 81.3 ± 9.9 µm/s, P = 0.069). After local heating, the OCT-based density, diameter, blood speed and blood flow of HF patients were similar (all P > 0.05) to CON. Although abnormalities exist at rest which may reflect microvascular disease status, patients with HF retain the capacity to dilate cutaneous microvessels in response to localised heat stress. This is a novel in vivo human observation of microvascular dysfunction in HF, illustrating the feasibility of OCT to directly visualise and quantify microvascular responses to physiological stimuli in vivo. KEY POINTS: Microvessels in the skin are critical to human thermoregulation, which is compromised in participants with heart failure (HF). We have developed a powerful new non-invasive optical coherence tomography (OCT)-based approach for the study of microvascular structure and function in vivo. Our approach enabled us to observe and quantify abnormal resting microvascular function in participants with HF. Patients with HF were able to dilate skin microvessels in response to local heat stress, arguing against an underlying structural abnormality. This suggests that microvascular functional regulation is the primary abnormality in HF. OCT can be used to directly visualise and quantify microvascular responses to physiological stimuli in vivo.


Asunto(s)
Insuficiencia Cardíaca , Tomografía de Coherencia Óptica , Administración Cutánea , Insuficiencia Cardíaca/diagnóstico por imagen , Humanos , Microvasos/diagnóstico por imagen , Piel/irrigación sanguínea , Piel/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos
3.
Small ; 18(17): e2107032, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35229467

RESUMEN

Multimodal microendoscopes enable co-located structural and molecular measurements in vivo, thus providing useful insights into the pathological changes associated with disease. However, different optical imaging modalities often have conflicting optical requirements for optimal lens design. For example, a high numerical aperture (NA) lens is needed to realize high-sensitivity fluorescence measurements. In contrast, optical coherence tomography (OCT) demands a low NA to achieve a large depth of focus. These competing requirements present a significant challenge in the design and fabrication of miniaturized imaging probes that are capable of supporting high-quality multiple modalities simultaneously. An optical design is demonstrated which uses two-photon 3D printing to create a miniaturized lens that is simultaneously optimized for these conflicting imaging modalities. The lens-in-lens design contains distinct but connected optical surfaces that separately address the needs of both fluorescence and OCT imaging within a lens of 330 µm diameter. This design shows an improvement in fluorescence sensitivity of >10x in contrast to more conventional fiber-optic design approaches. This lens-in-lens is then integrated into an intravascular catheter probe with a diameter of 520 µm. The first simultaneous intravascular OCT and fluorescence imaging of a mouse artery in vivo is reported.


Asunto(s)
Fotones , Tomografía de Coherencia Óptica , Animales , Tecnología de Fibra Óptica , Ratones , Imagen Óptica , Impresión Tridimensional , Tomografía de Coherencia Óptica/métodos
4.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34639185

RESUMEN

Local activation of an anti-cancer drug when and where needed can improve selectivity and reduce undesirable side effects. Photoswitchable drugs can be selectively switched between active and inactive states by illumination with light; however, the clinical development of these drugs has been restricted by the difficulty in delivering light deep into tissue where needed. Optical fibres have great potential for light delivery in vivo, but their use in facilitating photoswitching in anti-cancer compounds has not yet been explored. In this paper, a photoswitchable chemotherapeutic is switched using an optical fibre, and the cytotoxicity of each state is measured against HCT-116 colorectal cancer cells. The performance of optical-fibre-enabled photoswitching is characterised through its dose response. The UV-Vis spectra confirm light delivered by an optical fibre effectively enables photoswitching. The activated drug is shown to be twice as effective as the inactive drug in causing cancer cell death, characterised using an MTT assay and fluorescent microscopy. This is the first study in which a photoswitchable anti-cancer compound is switched using an optical fibre and demonstrates the feasibility of using optical fibres to activate photoswitchable drugs for potential future clinical applications.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Dimetilsulfóxido/química , Fibras Ópticas/estadística & datos numéricos , Antineoplásicos/química , Supervivencia Celular , Humanos , Células Tumorales Cultivadas
5.
Am J Physiol Endocrinol Metab ; 319(5): E923-E931, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32954827

RESUMEN

The pathophysiology and time course of impairment in cutaneous microcirculatory function and structure remain poorly understood in people with diabetes, partly due to the lack of investigational tools capable of directly imaging and quantifying the microvasculature in vivo. We applied a new optical coherence tomography (OCT) technique, at rest and during reactive hyperemia (RH), to assess the skin microvasculature in people with diabetes with foot ulcers (DFU, n = 13), those with diabetes without ulcers (DNU, n = 9), and matched healthy controls (CON, n = 13). OCT images were obtained from the dorsal part of the foot at rest and following 5 min of local ischemia induced by inflating a cuff around the thigh at suprasystolic level (220 mmHg). One-way ANOVA was used to compare the OCT-derived parameters (diameter, speed, flow rate, and density) at rest and in response to RH, with repeated-measures two-way ANOVA performed to analyze main and interaction effects between groups. Data are means ± SD. At rest, microvascular diameter in the DFU (84.89 ± 14.84 µm) group was higher than CON (71.25 ± 7.6 µm, P = 0.012) and DNU (71.33 ± 12.04 µm, P = 0.019) group. Speed in DFU (65.56 ± 4.80 µm/s, P = 0.002) and DNU (63.22 ± 4.35 µm/s, P = 0.050) were higher than CON (59.58 ± 3.02 µm/s). Microvascular density in DFU (22.23 ± 13.8%) was higher than in CON (9.83 ± 2.94%, P = 0.008), but not than in the DNU group (14.8 ± 10.98%, P = 0.119). All OCT-derived parameters were significantly increased in response to RH in the CON group (all P < 0.01) and DNU group (all P < 0.05). Significant increase in the DFU group was observed in speed (P = 0.031) and density (P = 0.018). The change in density was lowest in the DFU group (44 ± 34.1%) compared with CON (199.2 ± 117.5%, P = 0.005) and DNU (148.1 ± 98.4, P = 0.054). This study proves that noninvasive OCT microvascular imaging is feasible in people with diabetes, provides powerful new physiological insights, and can distinguish between healthy individuals and patients with diabetes with distinct disease severity.


Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico por imagen , Pie Diabético/diagnóstico por imagen , Microvasos/diagnóstico por imagen , Piel/irrigación sanguínea , Anciano , Femenino , Humanos , Hiperemia/diagnóstico por imagen , Masculino , Microcirculación , Persona de Mediana Edad , Piel/diagnóstico por imagen , Tomografía de Coherencia Óptica
6.
Microcirculation ; 27(2): e12594, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31585482

RESUMEN

William Harvey proved the circulation of blood 400 years ago using a combination of ligature application and astute observation that presaged the existence of capillaries. Here we report findings, based on our development of a novel application of optical coherence tomography (OCT), that directly confirm the impact of cuff inflation on microvessels as small as ~30µm. By emulating Harvey's proofs, using cuff inflation at low pressure in the presence and absence of skin heating, we have imaged and quantified significant effects on microvascular diameter and density in humans in vivo. The application of cuff pressure significantly increased microvascular diameter (40.5 ± 4.6 vs 47.1 ± 3.9 µm, P = .01) and density (8.33 ± 4.3 vs 15.1 ± 4.9%, P < .01). These impacts were reversed by cuff deflation. Our study also showed the profound impacts of skin heating on microvessel diameter (46.7 ± 5.8 vs 70.6 ± 7.8 µm, P < .01) and density (14.2 ± 6.5 vs 43.2 ± 9%, P < .01) in vivo, which were further exacerbated by cuff inflation. Our approach to the direct visualization of the human skin microvasculature is non-invasive, safe, and easily applied. Future experiments might be directed at questions of microvascular physiology and pathophysiology, such as how different mammals thermoregulate and what impacts cardiovascular disease and diabetes have on microvascular structure and function.


Asunto(s)
Capilares/diagnóstico por imagen , Microcirculación , Piel , Tomografía de Coherencia Óptica , Adulto , Femenino , Humanos , Masculino , Piel/irrigación sanguínea , Piel/diagnóstico por imagen
7.
Opt Lett ; 43(8): 1682-1685, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29652339

RESUMEN

The ability to visualize structure while simultaneously measuring chemical or physical properties of a biological tissue has the potential to improve our understanding of complex biological processes. We report the first miniaturized single-fiber-based imaging+sensing probe capable of simultaneous optical coherence tomography (OCT) imaging and temperature sensing. An OCT lens is fabricated at the distal end of a double-clad fiber, including a thin layer of rare-earth-doped tellurite glass to enable temperature measurements. The high refractive index of the tellurite glass enables a common-path interferometer configuration for OCT, allowing easy exchange of probes for biomedical applications. The simultaneous imaging+sensing capability is demonstrated on rat brains.


Asunto(s)
Temperatura Corporal/fisiología , Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen/métodos , Tecnología de Fibra Óptica/instrumentación , Fibras Ópticas , Tomografía de Coherencia Óptica/instrumentación , Animales , Diseño de Equipo , Ratas
8.
J Magn Reson Imaging ; 48(1): 140-152, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29316024

RESUMEN

BACKGROUND: Left ventricle (LV) structure and functions are the primary assessment performed in most clinical cardiac MRI protocols. Fully automated LV segmentation might improve the efficiency and reproducibility of clinical assessment. PURPOSE: To develop and validate a fully automated neural network regression-based algorithm for segmentation of the LV in cardiac MRI, with full coverage from apex to base across all cardiac phases, utilizing both short axis (SA) and long axis (LA) scans. STUDY TYPE: Cross-sectional survey; diagnostic accuracy. SUBJECTS: In all, 200 subjects with coronary artery diseases and regional wall motion abnormalities from the public 2011 Left Ventricle Segmentation Challenge (LVSC) database; 1140 subjects with a mix of normal and abnormal cardiac functions from the public Kaggle Second Annual Data Science Bowl database. FIELD STRENGTH/SEQUENCE: 1.5T, steady-state free precession. ASSESSMENT: Reference standard data generated by experienced cardiac radiologists. Quantitative measurement and comparison via Jaccard and Dice index, modified Hausdorff distance (MHD), and blood volume. STATISTICAL TESTS: Paired t-tests compared to previous work. RESULTS: Tested against the LVSC database, we obtained 0.77 ± 0.11 (Jaccard index) and 1.33 ± 0.71 mm (MHD), both metrics demonstrating statistically significant improvement (P < 0.001) compared to previous work. Tested against the Kaggle database, the signed difference in evaluated blood volume was +7.2 ± 13.0 mL and -19.8 ± 18.8 mL for the end-systolic (ES) and end-diastolic (ED) phases, respectively, with a statistically significant improvement (P < 0.001) for the ED phase. DATA CONCLUSION: A fully automated LV segmentation algorithm was developed and validated against a diverse set of cardiac cine MRI data sourced from multiple imaging centers and scanner types. The strong performance overall is suggestive of practical clinical utility. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.


Asunto(s)
Ventrículos Cardíacos/diagnóstico por imagen , Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Cinemagnética , Miocardio/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Automatización , Niño , Preescolar , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estudios Transversales , Diástole , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Movimiento (Física) , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Relación Señal-Ruido , Procesos Estocásticos , Sístole , Adulto Joven
9.
Exp Dermatol ; 25(9): 722-4, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27116945

RESUMEN

Assessment of vasculature is an important aspect of monitoring healing of cutaneous burn injuries. Recent advances in optical coherence tomography (OCT) have enabled it to be used to perform high-resolution imaging of the cutaneous vasculature in vivo, with the potential to provide a superior alternative to the conventional assessment of scoring skin color. The goal of this study is to investigate the feasibility of OCT angiography for longitudinal monitoring of vasculature and identification of vascular features in human cutaneous burns. We integrate several OCT imaging protocols and image-processing techniques into a systematic method for longitudinal monitoring and automatic quantification. The demonstration of this method on a partial-thickness burn shows the accurate co-location of longitudinal scans; characteristic vascular features in different healing phases; and eventual decrease of the elevated vasculature area density and vessel diameter to normal levels. Such a method holds promise for longitudinal monitoring of vasculature in burn injures as well as in other cutaneous vascular pathologies and responses to treatment.


Asunto(s)
Angiografía/métodos , Quemaduras/diagnóstico por imagen , Tomografía de Coherencia Óptica , Adulto , Femenino , Humanos , Neovascularización Fisiológica , Piel/irrigación sanguínea
10.
BMC Cancer ; 16(1): 874, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27829404

RESUMEN

BACKGROUND: Evaluation of lymph node involvement is an important factor in detecting metastasis and deciding whether to perform axillary lymph node dissection (ALND) in breast cancer surgery. As ALND is associated with potentially severe long term morbidity, the accuracy of lymph node assessment is imperative in avoiding unnecessary ALND. The mechanical properties of malignant lymph nodes are often distinct from those of normal nodes. A method to image the micro-scale mechanical properties of lymph nodes could, thus, provide diagnostic information to aid in the assessment of lymph node involvement in metastatic cancer. In this study, we scan axillary lymph nodes, freshly excised from breast cancer patients, with optical coherence micro-elastography (OCME), a method of imaging micro-scale mechanical strain, to assess its potential for the intraoperative assessment of lymph node involvement. METHODS: Twenty-six fresh, unstained lymph nodes were imaged from 15 patients undergoing mastectomy or breast-conserving surgery with axillary clearance. Lymph node specimens were bisected to allow imaging of the internal face of each node. Co-located OCME and optical coherence tomography (OCT) scans were taken of each sample, and the results compared to standard post-operative hematoxylin-and-eosin-stained histology. RESULTS: The optical backscattering signal provided by OCT alone may not provide reliable differentiation by inspection between benign and malignant lymphoid tissue. Alternatively, OCME highlights local changes in tissue strain that correspond to malignancy and are distinct from strain patterns in benign lymphoid tissue. The mechanical contrast provided by OCME complements the optical contrast provided by OCT and aids in the differentiation of malignant tumor from uninvolved lymphoid tissue. CONCLUSION: The combination of OCME and OCT images represents a promising method for the identification of malignant lymphoid tissue. This method shows potential to provide intraoperative assessment of lymph node involvement, thus, preventing unnecessary removal of uninvolved tissues and improving patient outcomes.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Ganglios Linfáticos/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Axila , Neoplasias de la Mama/cirugía , Femenino , Humanos , Cuidados Intraoperatorios , Ganglios Linfáticos/cirugía , Metástasis Linfática , Imagen Multimodal
11.
Bioorg Med Chem Lett ; 26(20): 4879-4883, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27662800

RESUMEN

Developing targeted validation probes that can interrogate biology is of interest for both chemists and biologists. The synthesis of suitable compounds provides a means for avoiding the costly labeling of cells with specific antibodies and the bias associated with the interpretation of biological validation experiments. The chemotherapeutic agent, tamoxifen has been routinely used in the treatment of breast cancer for decades. Once metabolized, the active form of tamoxifen (4-hydroxytamoxifen) competes with the binding of estrogens to the estrogen receptors (ER). Its selectivity in ER modulation makes it an ideal candidate for the development of materials to be used as chemical probes. Here we report the synthesis of a fluorescent BODIPY®FL conjugate of tamoxifen linked through an ethylene glycol moiety, and present proof-of-principle results in ER positive and ER negative cell lines. Optical microscopy indicates that the fluorescent probe binds selectively to tamoxifen sensitive breast cancer cell lines. The compound showed no affinity for the tamoxifen resistant breast cancer lines. The specificity of the new compound make it a valuable addition to the chemical probe tool kit for estrogen receptors.


Asunto(s)
Colorantes Fluorescentes/química , Tamoxifeno/química , Línea Celular Tumoral , Humanos , Receptores de Estrógenos/metabolismo , Tamoxifeno/metabolismo , Tamoxifeno/farmacología
12.
Physiology (Bethesda) ; 29(5): 369-80, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25180266

RESUMEN

Optical coherence tomography is a rapidly maturing optical imaging technology, enabling study of the in vivo structure of lung tissue at a scale of tens of micrometers. It has been used to assess the layered structure of airway walls, quantify both airway lumen caliber and compliance, and image individual alveoli. This article provides an overview of the technology and reviews its capability to provide new insights into respiratory disease.


Asunto(s)
Obstrucción de las Vías Aéreas/patología , Diagnóstico por Imagen , Pulmón/patología , Fenómenos Fisiológicos Respiratorios , Tomografía de Coherencia Óptica , Obstrucción de las Vías Aéreas/diagnóstico , Animales , Humanos , Enfermedades Pulmonares/diagnóstico
13.
Opt Lett ; 39(10): 3014-7, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24978261

RESUMEN

We present optical palpation, a tactile imaging technique for mapping micrometer- to millimeter-scale mechanical variations in soft tissue. In optical palpation, a stress sensor consisting of translucent, compliant silicone with known stress-strain behavior is placed on the tissue surface and a compressive load is applied. Optical coherence tomography (OCT) is used to measure the local strain in the sensor, from which the local stress at the sample surface is calculated and mapped onto an image. We present results in tissue-mimicking phantoms, demonstrating the detection of a feature embedded 4.7 mm below the sample surface, well beyond the depth range of OCT. We demonstrate the use of optical palpation to delineate the boundary of a region of tumor in freshly excised human breast tissue, validated against histopathology.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/fisiopatología , Diagnóstico por Imagen de Elasticidad/instrumentación , Manometría/instrumentación , Palpación/instrumentación , Tomografía de Coherencia Óptica/instrumentación , Tacto , Fuerza Compresiva , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Femenino , Dureza , Humanos , Estrés Mecánico , Resistencia a la Tracción , Transductores
14.
Opt Lett ; 39(10): 2888-91, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24978229

RESUMEN

We present an optofluidic optical coherence tomography (OCT) needle probe capable of modifying the local optical properties of tissue to improve needle-probe imaging performance. The side-viewing probe comprises an all-fiber-optic design encased in a hypodermic needle (outer diameter 720 µm) and integrates a coaxial fluid-filled channel, terminated by an outlet adjacent to the imaging window, allowing focal injection of fluid to a target tissue. This is the first fully integrated OCT needle probe design to incorporate fluid injection into the imaging mechanism. The utility of this probe is demonstrated in air-filled sheep lungs, where injection of small quantities of saline is shown, by local refractive index matching, to greatly improve image penetration through multiple layers of alveoli. 3D OCT images are correlated against histology, showing improvement in the capability to image lung structures such as bronchioles and blood vessels.


Asunto(s)
Pulmón/citología , Sistemas Microelectromecánicos/instrumentación , Microfluídica/instrumentación , Agujas , Dispositivos Ópticos , Procesamiento de Señales Asistido por Computador/instrumentación , Tomografía de Coherencia Óptica/instrumentación , Animales , Medios de Contraste/administración & dosificación , Diseño de Equipo , Análisis de Falla de Equipo , Técnicas In Vitro , Ovinos , Cloruro de Sodio/administración & dosificación , Integración de Sistemas
15.
Biomed Opt Express ; 15(4): 2392-2405, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633092

RESUMEN

Single-fiber-based sensing and imaging probes enable the co-located and simultaneous observation and measurement (i.e., 'sense' and 'see') of intricate biological processes within deep anatomical structures. This innovation opens new opportunities for investigating complex physiological phenomena and potentially allows more accurate diagnosis and monitoring of disease. This prospective review starts with presenting recent studies of single-fiber-based probes for concurrent and co-located fluorescence-based sensing and imaging. Notwithstanding the successful initial demonstration of integrated sensing and imaging within single-fiber-based miniaturized devices, the realization of these devices with enhanced sensing sensitivity and imaging resolution poses notable challenges. These challenges, in turn, present opportunities for future research, including the design and fabrication of complex lens systems and fiber architectures, the integration of novel materials and other sensing and imaging techniques.

16.
Biomed Opt Express ; 15(1): 346-359, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223187

RESUMEN

The fabrication of a stable, reproducible optical imaging phantom is critical to the assessment and optimization of optical imaging systems. We demonstrate the use of an alternative material, glass, for the development of tissue-mimicking phantoms. The glass matrix was doped with nickel ions to approximate the absorption of hemoglobin. Scattering levels representative of human tissue were induced in the glass matrix through controlled crystallization at elevated temperatures. We show that this type of glass is a viable material for creating tissue-mimicking optical phantoms by providing controlled levels of scattering and absorption with excellent optical homogeneity, long-term stability and reproducibility.

17.
Micromachines (Basel) ; 15(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38930711

RESUMEN

Tissue imaging is crucial in oral cancer diagnostics. Imaging techniques such as X-ray imaging, magnetic resonance imaging, optical coherence tomography (OCT) and computed tomography (CT) enable the visualization and analysis of tissues, aiding in the detection and diagnosis of cancers. A significant amount of research has been conducted on designing OCT probes for tissue imaging, but most probes are either heavy, bulky and require external mounting or are lightweight but straight. This study addresses these challenges, resulting in a curved lightweight, low-voltage and compact handheld imaging probe for oral soft tissue examination. To the best of our knowledge, this is the first curved handheld OCT probe with its shape optimized for oral applications. This probe features highly compact all-fiber optics with a diameter of 125 µm and utilizes innovative central deflection magnetic actuation for controlled beam scanning. To ensure vertical stability while scanning oral soft tissues, the fiber was secured through multiple narrow slits at the probe's distal end. This apparatus was encased in a 3D-printed angular cylinder tube (15 mm outer diameter, 12 mm inner diameter and 160 mm in length, weighing < 20 g). An angle of 115° makes the probe easy to hold and suitable for scanning in space-limited locations. To validate the feasibility of this probe, we conducted assessments on a multi-layered imaging phantom and human tissues, visualizing microstructural features with high contrast.

18.
Sci Rep ; 14(1): 12359, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811670

RESUMEN

Atherosclerosis is the build-up of fatty plaques within blood vessel walls, which can occlude the vessels and cause strokes or heart attacks. It gives rise to both structural and biomolecular changes in the vessel walls. Current single-modality imaging techniques each measure one of these two aspects but fail to provide insight into the combined changes. To address this, our team has developed a dual-modality imaging system which combines optical coherence tomography (OCT) and fluorescence imaging that is optimized for a porphyrin lipid nanoparticle that emits fluorescence and targets atherosclerotic plaques. Atherosclerosis-prone apolipoprotein (Apo)e-/- mice were fed a high cholesterol diet to promote plaque development in descending thoracic aortas. Following infusion of porphyrin lipid nanoparticles in atherosclerotic mice, the fiber-optic probe was inserted into the aorta for imaging, and we were able to robustly detect a porphyrin lipid-specific fluorescence signal that was not present in saline-infused control mice. We observed that the nanoparticle fluorescence colocalized in areas of CD68+ macrophages. These results demonstrate that our system can detect the fluorescence from nanoparticles, providing complementary biological information to the structural information obtained from simultaneously acquired OCT.


Asunto(s)
Nanopartículas , Placa Aterosclerótica , Porfirinas , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Animales , Placa Aterosclerótica/diagnóstico por imagen , Nanopartículas/química , Ratones , Porfirinas/química , Imagen Óptica/métodos , Modelos Animales de Enfermedad , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Aterosclerosis/patología , Macrófagos/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/química
19.
Opt Lett ; 38(3): 266-8, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23381406

RESUMEN

To the best of our knowledge, we present the first needle probe for combined optical coherence tomography (OCT), and fluorescence imaging. The probe uses double-clad fiber (DCF) that guides the OCT signal and fluorescence excitation light in the core and collects and guides the returning fluorescence in the large-diameter multimode inner cladding. It is interfaced to a 1310 nm swept-source OCT system that has been modified to enable simultaneous 488 nm fluorescence excitation and >500 nm emission detection by using a DCF coupler to extract the returning fluorescence signal in the inner cladding with high efficiency. We present imaging results from an excised sheep lung with fluorescein solution infused through the vasculature. We were able to identify alveoli, bronchioles, and blood vessels. The results demonstrate that the combined OCT plus fluorescence needle images provide improved tissue differentiation over OCT alone.


Asunto(s)
Espectrometría de Fluorescencia/métodos , Tomografía de Coherencia Óptica/métodos , Animales , Arterias/patología , Vasos Sanguíneos/patología , Bronquiolos/patología , Medios de Contraste/farmacología , Endoscopía/métodos , Diseño de Equipo , Fluorescencia , Imagenología Tridimensional , Pulmón/irrigación sanguínea , Pulmón/patología , Agujas , Imagen Óptica/métodos , Alveolos Pulmonares/patología , Ovinos
20.
Diagnostics (Basel) ; 13(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37627901

RESUMEN

Malignant transformation of oral lichen planus (OLP) into oral squamous cell carcinoma is considered as one of the most serious complications of OLP. For the early detection of oral cancer in OLP follow-up, accurate localization of the OLP center is still difficult but often required for confirmatory biopsy with histopathological examination. Optical coherence tomography (OCT) offers the potential for more reliable biopsy sampling in the oral cavity as it is capable of non-invasively imaging the degenerated oral layer structure. In this case-series study with 15 patients, features of clinically classified forms of OLP in OCT cross-sections were registered and correlated with available histologic sections. Besides patients with reticular, atrophic, erosive and plaque-like OLP, two patients with leukoplakia were included for differentiation. The results show that OCT yields information about the epithelial surface, thickness and reflectivity, as well as the identifiability of the basement membrane and the vessel network, which could be used to complement the visual clinical appearance of OLP variants and allow a more accurate localization of the OLP center. This forms the basis for further studies on OCT-assisted non-invasive clinical classification of OLP, with the aim of enabling decision support for biopsy sampling in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA