Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(51): 32691-32700, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288687

RESUMEN

Preclinical and clinical data support the use of focused ultrasound (FUS), in the presence of intravenously injected microbubbles, to safely and transiently increase the permeability of the blood-brain barrier (BBB). FUS-induced BBB permeability has been shown to enhance the bioavailability of administered intravenous therapeutics to the brain. Ideal therapeutics candidates for this mode of delivery are those capable of inducing benefits peripherally following intravenous injection and in the brain at FUS-targeted areas. In Alzheimer's disease, intravenous immunoglobulin (IVIg), a fractionated human blood product containing polyclonal antibodies, act as immunomodulator peripherally and centrally, and it can reduce amyloid pathology in the brain. Using the TgCRND8 mouse model of amyloidosis, we tested whether FUS can improve the delivery of IVIg, administered intravenously (0.4 g/kg), to the hippocampus and reach an effective dose to reduce amyloid plaque pathology and promote neurogenesis. Our results show that FUS-induced BBB permeability is required to deliver a significant amount of IVIg (489 ng/mg) to the targeted hippocampus of TgCRN8 mice. Two IVIg-FUS treatments, administered at days 1 and 8, significantly increased hippocampal neurogenesis by 4-, 3-, and 1.5-fold in comparison to saline, IVIg alone, and FUS alone, respectively. Amyloid plaque pathology was significantly reduced in all treatment groups: IVIg alone, FUS alone, and IVIg-FUS. Putative factors promoting neurogenesis in response to IVIg-FUS include the down-regulation of the proinflammatory cytokine TNF-α in the hippocampus. In summary, FUS was required to deliver an effective dose of IVIg to promote hippocampal neurogenesis and modulate the inflammatory milieu.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Hipocampo/efectos de los fármacos , Inmunoglobulinas Intravenosas/administración & dosificación , Inmunoglobulinas Intravenosas/farmacología , Ultrasonido/métodos , Enfermedad de Alzheimer/patología , Animales , Disponibilidad Biológica , Barrera Hematoencefálica/efectos de los fármacos , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/farmacocinética , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inmunoglobulinas Intravenosas/farmacocinética , Imagen por Resonancia Magnética , Masculino , Ratones Transgénicos , Microburbujas , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/patología , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/metabolismo
2.
Brain ; 143(1): 359-373, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782760

RESUMEN

Failure of Alzheimer's disease clinical trials to improve or stabilize cognition has led to the need for a better understanding of the driving forces behind cognitive decline in the presence of active disease processes. To dissect contributions of individual pathologies to cognitive function, we used the TgF344-AD rat model, which recapitulates the salient hallmarks of Alzheimer's disease pathology observed in patient populations (amyloid, tau inclusions, frank neuronal loss, and cognitive deficits). scyllo-Inositol treatment attenuated amyloid-ß peptide in disease-bearing TgF344-AD rats, which rescued pattern separation in the novel object recognition task and executive function in the reversal learning phase of the Barnes maze. Interestingly, neither activities of daily living in the burrowing task nor spatial memory in the Barnes maze were rescued by attenuating amyloid-ß peptide. To understand the pathological correlates leading to behavioural rescue, we examined the neuropathology and in vivo electrophysiological signature of the hippocampus. Amyloid-ß peptide attenuation reduced hippocampal tau pathology and rescued adult hippocampal neurogenesis and neuronal function, via improvements in cross-frequency coupling between theta and gamma bands. To investigate mechanisms underlying the persistence of spatial memory deficits, we next examined neuropathology in the entorhinal cortex, a region whose input to the hippocampus is required for spatial memory. Reduction of amyloid-ß peptide in the entorhinal cortex had no effect on entorhinal tau pathology or entorhinal-hippocampal neuronal network dysfunction, as measured by an impairment in hippocampal response to entorhinal stimulation. Thus, rescue or not of cognitive function is dependent on regional differences of amyloid-ß, tau and neuronal network dysfunction, demonstrating the importance of staging disease in patients prior to enrolment in clinical trials. These results further emphasize the need for combination therapeutic approaches across disease progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Cognición/efectos de los fármacos , Corteza Entorrinal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Inositol/farmacología , Memoria Espacial/efectos de los fármacos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Función Ejecutiva/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Aprendizaje por Laberinto , Vías Nerviosas , Ovillos Neurofibrilares/efectos de los fármacos , Ovillos Neurofibrilares/patología , Neurogénesis/efectos de los fármacos , Ratas , Ratas Transgénicas , Reconocimiento en Psicología/efectos de los fármacos , Aprendizaje Inverso/efectos de los fármacos
3.
Neuroimage ; 222: 117269, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32818618

RESUMEN

Physical activity has been correlated with a reduced risk of cognitive decline, including that associated with vascular dementia, mild cognitive impairment (MCI) and Alzheimer's disease (AD); recent literature suggests this may in part result from benefits to the cerebrovascular network. Using a transgenic (Tg) mouse model of AD, we evaluated the effect of running on cortical and hippocampal vascular morphology, cerebral amyloid angiopathy, amyloid plaque load, and spatial memory. TgCRND8 mice present with progressive amyloid pathology, advancing from the cortex to the hippocampus in a time-dependent manner. We postulated that the characteristic progression of pathology could lead to differential, time-dependent effects of physical activity on vascular morphology in these brain regions at 6 months of age. We used two-photon fluorescent microscopy and 3D vessel tracking to characterize vascular and amyloid pathology in sedentary TgCRND8 mice compared those who have a history of physical activity (unlimited access to a running wheel, from 3 to 6 months of age). In sedentary TgCRND8 mice, capillary density was found to be lower in the cortex and higher in the hippocampus compared to non-transgenic (nonTg) littermates. Capillary length, vessel branching, and non-capillary vessel tortuosity were also higher in the hippocampus of sedentary TgCRND8 compared to nonTg mice. Three months of voluntary running resulted in normalizing cortical and hippocampal microvascular morphology, with no significant difference between TgCRND8 and nonTg mice. The benefits of physical activity on cortical and hippocampal vasculature in 6-month old TgCRND8 mice were not paralleled by significant changes on parenchymal and cerebral amyloid pathology. Short-term spatial memory- as evaluated by performance in the Y-maze- was significantly improved in running compared to sedentary TgCRND8 mice. These results suggest that long-term voluntary running contributes to the maintenance of vascular morphology and spatial memory in TgCRND8 mice, even in the absence of an effect on amyloid pathology.


Asunto(s)
Enfermedad de Alzheimer/patología , Amiloidosis/patología , Hipocampo/metabolismo , Memoria a Corto Plazo/fisiología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidosis/fisiopatología , Animales , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Hipocampo/patología , Ratones Transgénicos , Placa Amiloide
4.
Int J Mol Sci ; 21(6)2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32183293

RESUMEN

Insurmountable evidence has demonstrated a strong association between Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), along with various other cerebrovascular diseases. One form of CAA, which is the accumulation of amyloid-beta peptides (Aß) along cerebral vessel walls, impairs perivascular drainage pathways and contributes to cerebrovascular dysfunction in AD. To date, CAA research has been primarily focused on arterial Aß, while the accumulation of Aß in veins and venules were to a lesser extent. In this review, we describe preclinical models and clinical studies supporting the presence of venular amyloid and potential downstream pathological mechanisms that affect the cerebrovasculature in AD. Venous collagenosis, impaired cerebrovascular pulsatility, and enlarged perivascular spaces are exacerbated by venular amyloid and increase Aß deposition, potentially through impaired perivascular clearance. Gaining a comprehensive understanding of the mechanisms involved in venular Aß deposition and associated pathologies will give insight to how CAA contributes to AD and its association with AD-related cerebrovascular disease. Lastly, we suggest that special consideration should be made to develop Aß-targeted therapeutics that remove vascular amyloid and address cerebrovascular dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/irrigación sanguínea , Angiopatía Amiloide Cerebral/patología , Placa Amiloide/patología , Proteínas Amiloidogénicas/metabolismo , Humanos , Insuficiencia Venosa/patología , Vénulas/patología
5.
Stroke ; 49(9): 2173-2181, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30354983

RESUMEN

Background and Purpose- Recent evidence suggests great potential of metabolically targeted interventions for treating neurological disorders. We investigated the use of the endogenous ketone body ß-hydroxybutyrate (BHB) as an alternate metabolic substrate for the brain in the acute phase of ischemia because postischemic hyperglycemia and brain glucose metabolism elevation compromise functional recovery. Methods- We delivered BHB (or vehicle) 1 hour after ischemic insult induced by cortical microinjection of endothelin-1 in sensorimotor cortex of rats. Two days after ischemic insult, the rats underwent multimodal characterization of the BHB effects. We examined glucose uptake on 2-Deoxy-d-glucose chemical exchange saturation transfer magnetic resonance imaging, cerebral hemodynamics on continuous arterial spin labeling magnetic resonance imaging, resting-state field potentials by intracerebral multielectrode arrays, Neurological Deficit Score, reactive oxygen species production, and astrogliosis and neuronal death. Results- When compared with vehicle-administered animals, BHB-treated cohort showed decreased peri-infarct neuronal glucose uptake which was associated with reduced oxidative stress, diminished astrogliosis and neuronal death. Functional examination revealed ameliorated neuronal functioning, normalized perilesional resting perfusion, and ameliorated cerebrovascular reactivity to hypercapnia, suggesting improved functioning. Cellular and functional recovery of the neurogliovascular unit in the BHB-treated animals was associated with improved performance on the withdrawal test. Conclusions- We characterize the effects of the ketone body BHB administration at cellular and system levels after focal cortical stroke. The results demonstrate that BHB curbs the peri-infarct glucose-metabolism driven production of reactive oxygen species and astrogliosis, culminating in improved neurogliovascular and functional recovery.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Astrocitos/efectos de los fármacos , Isquemia Encefálica/metabolismo , Encéfalo/efectos de los fármacos , Neuronas/efectos de los fármacos , Ácido 3-Hidroxibutírico/metabolismo , Acetoacetatos/metabolismo , Animales , Astrocitos/patología , Glucemia/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/patología , Muerte Celular/efectos de los fármacos , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Endotelina-1 , Hemodinámica , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Microinyecciones , Neuronas/patología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Corteza Sensoriomotora
6.
J Neurochem ; 144(5): 659-668, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28722749

RESUMEN

The causes of late-onset Alzheimer's disease are unclear and likely multifactorial. Rho-associated protein kinases (ROCKs) are ubiquitously expressed signaling messengers that mediate a wide array of cellular processes. Interestingly, they play an important role in several vascular and brain pathologies implicated in Alzheimer's etiology, including hypertension, hypercholesterolemia, blood-brain barrier disruption, oxidative stress, deposition of vascular and parenchymal amyloid-beta peptides, tau hyperphosphorylation, and cognitive decline. The current review summarizes the functions of ROCKs with respect to the various risk factors and pathologies on both sides of the blood-brain barrier and present support for targeting ROCK signaling as a multifactorial and multi-effect approach for the prevention and amelioration of late-onset Alzheimer's disease. This article is part of the Special Issue "Vascular Dementia".


Asunto(s)
Enfermedad de Alzheimer , Encéfalo/metabolismo , Encéfalo/patología , Quinasas Asociadas a rho/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/irrigación sanguínea , Humanos , Tejido Parenquimatoso , Factores de Riesgo , Transducción de Señal
7.
J Neurochem ; 144(5): 669-679, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28777881

RESUMEN

Alzheimer's disease (AD) is pathologically characterized by amyloid-ß peptide (Aß) accumulation, neurofibrillary tangle formation, and neurodegeneration. Preclinical studies on neuronal impairments associated with progressive amyloidosis have demonstrated some Aß-dependent neuronal dysfunction including modulation of gamma-aminobutyric acid-ergic signaling. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broad repertoire of AD-like pathologies to investigate the neuronal network functioning using simultaneous intracranial recordings from the hippocampus (HPC) and the medial prefrontal cortex (mPFC), followed by pathological analyses of gamma-aminobutyric acid (GABAA ) receptor subunits α1, α5, and δ, and glutamic acid decarboxylases (GAD65 and GAD67). Concomitant to amyloid deposition and tau hyperphosphorylation, low-gamma band power was strongly attenuated in the HPC and mPFC of TgF344-AD rats in comparison to those in non-transgenic littermates. In addition, the phase-amplitude coupling of the neuronal networks in both areas was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude in TgF344-AD animals. Finally, the gamma coherence between HPC and mPFC was attenuated as well. These results demonstrate significant neuronal network dysfunction at an early stage of AD-like pathology. This network dysfunction precedes the onset of cognitive deficits and is likely driven by Aß and tau pathologies. This article is part of the Special Issue "Vascular Dementia".


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Hipocampo/fisiopatología , Neuronas/fisiología , Corteza Prefrontal/fisiopatología , Enfermedad de Alzheimer/patología , Animales , Ondas Encefálicas , Modelos Animales de Enfermedad , Femenino , Glutamato Descarboxilasa/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Vías Nerviosas/fisiopatología , Placa Amiloide/metabolismo , Corteza Prefrontal/patología , Ratas Endogámicas F344 , Ratas Transgénicas , Receptores de GABA-A/metabolismo
8.
Neuroimage ; 146: 869-882, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27664828

RESUMEN

Brain plasticity following focal cerebral ischaemia has been observed in both stroke survivors and in preclinical models of stroke. Endogenous neurovascular adaptation is at present incompletely understood yet its potentiation may improve long-term functional outcome. We employed longitudinal MRI, intracranial array electrophysiology, Montoya Staircase testing, and immunofluorescence to examine function of brain vessels, neurons, and glia in addition to forelimb skilled reaching during the subacute stage of ischemic injury progression. Focal ischemic stroke (~100mm3 or ~20% of the total brain volume) was induced in adult Sprague-Dawley rats via direct injection of endothelin-1 (ET-1) into the right sensori-motor cortex, producing sustained impairment in left forelimb reaching ability. Resting perfusion and vascular reactivity to hypercapnia in the peri-lesional cortex were elevated by approximately 60% and 80% respectively seven days following stroke. At the same time, the normal topological pattern of local field potential (LFP) responses to peripheral somatosensory stimulation was abolished and the average power of spontaneous LFP activity attenuated by approximately 50% relative to the contra-lesional cortex, suggesting initial response attenuation within the peri-infarct zone. By 21 days after stroke, perilesional blood flow resolved, but peri-lesional vascular reactivity remained elevated. Concomitantly, the LFP response amplitudes increased with distance from the site of ET-1 injection, suggesting functional remodelling from the core of the lesion to its periphery. This notion was further buttressed by the lateralization of spontaneous neuronal activity: by day 21, the average ipsi-lesional power of spontaneous LFP activity was almost twice that of the contra-lesional cortex. Over the observation period, the peri-lesional cortex exhibited increased vascular density, along with neuronal loss, astrocytic activation, and recruitment and activation of microglia and macrophages, with neuronal loss and inflammation extending beyond the peri-lesional cortex. These findings highlight the complex relationship between neurophysiological state and behaviour and provide evidence of highly dynamic functional changes in the peri-infarct zone weeks following the ischemic insult, suggesting an extended temporal window for therapeutic interventions.


Asunto(s)
Isquemia Encefálica/fisiopatología , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Corteza Somatosensorial/irrigación sanguínea , Corteza Somatosensorial/fisiopatología , Accidente Cerebrovascular/fisiopatología , Remodelación Vascular , Animales , Encéfalo/metabolismo , Isquemia Encefálica/inducido químicamente , Isquemia Encefálica/complicaciones , Ondas Encefálicas , Encefalitis/complicaciones , Encefalitis/metabolismo , Endotelina-1/administración & dosificación , Hipercapnia/fisiopatología , Imagen por Resonancia Magnética , Masculino , Destreza Motora , Neuroglía/metabolismo , Neuronas/metabolismo , Estimulación Física , Ratas Sprague-Dawley , Recuperación de la Función , Corteza Sensoriomotora/efectos de los fármacos , Accidente Cerebrovascular/inducido químicamente , Accidente Cerebrovascular/complicaciones , Percepción del Tacto/fisiología
9.
J Magn Reson Imaging ; 46(2): 505-517, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28703413

RESUMEN

PURPOSE: Stroke is the leading cause of adult disability worldwide. The absence of more effective interventions in the chronic stage-that most patients stand to benefit from-reflects uncertainty surrounding mechanisms that govern recovery. The present work investigated the effects of a novel treatment (selective cyclooxygenase-1, COX-1, inhibition) in a model of focal ischemia. MATERIALS AND METHODS: FR122047 (COX-1 inhibitor) was given beginning 7 days following stroke (cortical microinjection of endothelin-1) in 23 adult male rats. Longitudinal continuous-arterial-spin-labeling was performed prior to treatment (7 days), and repeated following treatment (21 days) on a 7T magnetic resonance imaging (MRI) system to estimate resting perfusion and reactivity to hypercapnia. These in vivo measurements were buttressed by immunohistochemistry. RESULTS: Stroke caused an increase in perilesional resting perfusion (peri-/contralesional perfusion ratio of 170 ± 10%) and perfusion responses to hypercapnia (180 ± 10%) at 7 days. At 21 days, placebo-administered rats showed normalized perilesional perfusion (100 ± 20%) but persistent hyperreactivity (190 ± 20%). Treated animals exhibited sustained perilesional hyperperfusion (180 ± 10%). Further, reactivity lateralization did not persist following treatment (peri- vs. contralesional reactivity: P = 0.002 at 7 vs. P = 0.2 at 21 days). Hemodynamic changes were accompanied by neuronal loss, increased endothelial density, and widespread microglial and astrocytic activation. Moreover, relative to controls, treated rats showed increased perilesional neuronal survival (22 ± 1% vs. 14.9 ± 0.8%, P = 0.02) and decreased microglia/macrophage recruitment (17 ± 1% vs. 20 ± 1%, P = 0.05). Finally, perilesional perfusion was correlated with neuronal survival (slope = 0.14 ± 0.05; R2 = 0.7, P = 0.03). CONCLUSION: These findings shed light on the role of COX-1 in chronic ischemic injury and suggest that delayed selective COX-1 inhibition exerts multiple beneficial effects on the neurogliovascular unit. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 4 J. MAGN. RESON. IMAGING 2017;46:505-517.


Asunto(s)
Inhibidores de la Ciclooxigenasa/farmacología , Isquemia/diagnóstico por imagen , Imagen por Resonancia Magnética , Proteínas de la Membrana/antagonistas & inhibidores , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/fisiopatología , Animales , Ciclooxigenasa 1 , Modelos Animales de Enfermedad , Endotelina-1/química , Macrófagos/patología , Masculino , Microglía/patología , Neuroglía/patología , Neuronas/patología , Perfusión , Piperazinas/química , Ratas , Ratas Sprague-Dawley , Marcadores de Spin , Tiazoles/química
10.
J Neurosci ; 35(37): 12779-91, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377466

RESUMEN

Attention deficits in Alzheimer's disease can exacerbate its other cognitive symptoms, yet relevant disruptions of key prefrontal circuitry are not well understood. Here, in the TgCRND8 mouse model of this neurological disorder, we demonstrate and characterize a disruption of cholinergic excitation in the major corticothalamic layer of the prefrontal cortex, in which modulation by acetylcholine is essential for optimal attentional function. Using electrophysiology with concurrent multiphoton imaging, we show that layer 6 pyramidal cells are unable to sustain cholinergic excitation to the same extent as their nontransgenic littermate controls, as a result of the excessive activation of calcium-activated hyperpolarizing conductances. We report that cholinergic excitation can be improved in TgCRND8 cortex by pharmacological blockade of SK channels, suggesting a novel target for the treatment of cognitive dysfunction in Alzheimer's disease. SIGNIFICANCE STATEMENT: Alzheimer's disease is accompanied by attention deficits that exacerbate its other cognitive symptoms. In brain slices of a mouse model of this neurological disorder, we demonstrate, characterize, and rescue impaired cholinergic excitation of neurons essential for optimal attentional performance. In particular, we show that the excessive activation of a calcium-activated potassium conductance disrupts the acetylcholine excitation of prefrontal layer 6 pyramidal neurons and that its blockade normalizes responses. These findings point to a novel potential target for the treatment of cognitive dysfunction in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Atención/fisiología , Señalización del Calcio/fisiología , Neuronas Colinérgicas/fisiología , Proteínas del Tejido Nervioso/fisiología , Corteza Prefrontal/fisiopatología , Células Piramidales/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Transmisión Sináptica/fisiología , Acetilcolina/farmacología , Acetilcolina/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Apamina/farmacología , Atropina/farmacología , Atención/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Neuronas Colinérgicas/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Genotipo , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/efectos de los fármacos , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
11.
Biochem Biophys Res Commun ; 469(3): 529-34, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26697752

RESUMEN

Recent literature demonstrates the accelerated aggregation of α-synuclein, a protein implicated in the pathogenesis of Parkinson's disease (PD), by the presence of preformed fibrillar conformers in vitro. Furthermore, these preformed fibrillar seeds are suggested to accelerate pathological induction in vivo when injected into the brains of mice. Variation in the results of in vivo studies is proposed to be caused by α-synuclein conformational variants. To investigate the impact of amino acid sequence on seeding efficiency, human and mouse α-synuclein seeds, which vary at 7 amino acid residues, were generated and cross-seeding kinetics studied. Using transmission electron microscopy (TEM), we confirmed that mouse α-synuclein aggregated more rapidly than human α-synuclein. Subsequently, we determined that seeding of human and mouse α-synuclein was more rapid in the presence of seeds generated from the same species. In addition, an established amyloid inhibitor, scyllo-inositol, was examined for potential inhibitory effects on α-synuclein aggregation. TEM analysis of protein:inhibitor assays demonstrated that scyllo-inositol inhibits the aggregation of α-synuclein, suggesting the therapeutic potential of the small molecule in PD.


Asunto(s)
Inositol/química , Complejos Multiproteicos/síntesis química , alfa-Sinucleína/química , Animales , Sitios de Unión , Ratones , Unión Proteica , Especificidad de la Especie
12.
Cell Mol Neurobiol ; 36(2): 289-99, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26993511

RESUMEN

Although the brain lacks conventional lymphatic vessels found in peripheral tissue, evidence suggests that the space surrounding the vasculature serves a similar role in the clearance of fluid and metabolic waste from the brain. With aging, neurodegeneration, and cerebrovascular disease, these microscopic perivascular spaces can become enlarged, allowing for visualization and quantification on structural MRI. The purpose of this review is to: (i) describe some of the recent pre-clinical findings from basic science that shed light on the potential neurophysiological mechanisms driving glymphatic and perivascular waste clearance, (ii) review some of the pathobiological etiologies that may lead to MRI-visible enlarged perivascular spaces (ePVS), (iii) describe the possible clinical implications of ePVS, (iv) evaluate existing qualitative and quantitative techniques used for measuring ePVS burden, and (v) propose future avenues of research that may improve our understanding of this potential clinical neuroimaging biomarker for fluid and metabolic waste clearance dysfunction in neurodegenerative and neurovascular diseases.


Asunto(s)
Trastornos Cerebrovasculares/diagnóstico por imagen , Trastornos Cerebrovasculares/patología , Sistema Linfático/diagnóstico por imagen , Sistema Linfático/patología , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/patología , Neuroimagen/métodos , Animales , Trastornos Cerebrovasculares/inmunología , Humanos , Sistema Linfático/inmunología , Enfermedades Neurodegenerativas/inmunología , Investigación Biomédica Traslacional
13.
Brain ; 138(Pt 4): 1046-58, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25688079

RESUMEN

Most patients with Alzheimer's disease exhibit accumulation of amyloid-ß peptide on leptomeningeal and cortical arterioles, or cerebral amyloid angiopathy, which is associated with impaired vascular reactivity and accelerated cognitive decline. Despite widespread recognition of the significance of vascular dysfunction in Alzheimer's disease aetiology and progression, much uncertainty still surrounds the mechanism underlying Alzheimer's disease vascular injury. Studies to date have focused on amyloid-ß-induced damage to capillaries and plaque-associated arterioles, without examining effects across the entire vascular bed. In the present study, we investigated the structural and functional impairment of the feeding arteriolar versus draining venular vessels in a transgenic murine Alzheimer's disease model, with a particular focus on the mural cell populations that dictate these vessels' contractility. Although amyloid-ß deposition was restricted to arterioles, we found that vascular impairment extended to the venules, which showed significant depletion of their mural cell coverage by the mid-stage of Alzheimer's disease pathophysiology. These structural abnormalities were accompanied by an abolishment of the normal vascular network flow response to hypercapnia: this functional impairment was so severe as to result in hypercapnia-induced flow decreases in the arterioles. Further pharmacological depletion of mural cells using SU6668, a platelet-derived growth factor receptor-ß antagonist, resulted in profound structural abnormalities of the cortical microvasculature, including vessel coiling and short-range looping, increased tortuosity of the venules but not of the arterioles, increased amyloid-ß deposition on the arterioles, and further alterations of the microvascular network cerebral blood flow response to hypercapnia. Together, this work shows hitherto unrecognized structural alterations in penetrating venules, demonstrates their functional significance and sheds light on the complexity of the relationship between vascular network structure and function in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Vénulas/patología , Vénulas/fisiopatología , Animales , Cricetinae , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos
14.
J Neurosci ; 34(20): 6736-45, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24828629

RESUMEN

In Alzheimer's disease (AD), appropriate excitatory-inhibitory balance required for memory formation is impaired. Our objective was to elucidate deficits in the inhibitory GABAergic system in the TgCRND8 mouse model of AD to establish a link between GABAergic dysfunction and cognitive function. We sought to determine whether the neuroprotective peptide α-melanocyte stimulating hormone (α-MSH) attenuates GABAergic loss and thus improves cognition. TgCRND8 mice with established ß-amyloid peptide pathology and nontransgenic littermates were treated with either α-MSH or vehicle via daily intraperitoneal injections for 28 d. TgCRND8 mice exhibited spatial memory deficits and altered anxiety that were rescued after α-MSH treatment. The expression of GABAergic marker glutamic acid decarboxylase 67 (GAD67) and the number of GABAergic GAD67+ interneurons expressing neuropeptide Y and somatostatin are reduced in the hippocampus in vehicle-treated TgCRND8 mice. In the septohippocampal pathway, GABAergic deficits are observed before cholinergic deficits, suggesting that GABAergic loss may underlie behavior deficits in vehicle-treated TgCRND8 mice. α-MSH preserves GAD67 expression and prevents loss of the somatostatin-expressing subtype of GABAergic GAD67+ inhibitory interneurons. Without decreasing ß-amyloid peptide load in the brain, α-MSH improves spatial memory in TgCRND8 mice and prevents alterations in anxiety. α-MSH modulated the excitatory-inhibitory balance in the brain by restoring GABAergic inhibition and, as a result, improved cognition in TgCRND8 mice.


Asunto(s)
Enfermedad de Alzheimer/patología , Cognición/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , alfa-MSH/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Cognición/fisiología , Modelos Animales de Enfermedad , Femenino , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Hipocampo/metabolismo , Hipocampo/patología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Interneuronas/patología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos
15.
J Biol Chem ; 289(6): 3666-76, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24352657

RESUMEN

Huntington disease is characterized by neuronal aggregates and inclusions containing polyglutamine-expanded huntingtin protein and peptide fragments (polyQ-Htt). We have used an established cell-based assay employing a PC12 cell line overexpressing truncated exon 1 of Htt with a 103-residue polyQ expansion that yields polyQ-Htt aggregates to investigate the fate of polyQ-Htt-drug complexes. scyllo-Inositol is an endogenous inositol stereoisomer known to inhibit accumulation and toxicity of the amyloid-ß peptide and α-synuclein. In light of these properties, we investigated the effect of scyllo-inositol on polyQ-Htt accumulation. We show that scyllo-inositol lowered the number of visible polyQ-Htt aggregates and robustly decreased polyQ-Htt protein abundance without concomitant cellular toxicity. We found that scyllo-inositol-induced polyQ-Htt reduction was by rescue of degradation pathways mediated by the lysosome and by the proteasome but not autophagosomes. The rescue of degradation pathways was not a direct result of scyllo-inositol on the lysosome or proteasome but due to scyllo-inositol-induced reduction in mutant polyQ-Htt protein levels.


Asunto(s)
Inositol/farmacología , Lisosomas/metabolismo , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Proteína Huntingtina , Lisosomas/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Células PC12 , Péptidos/genética , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Ratas , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
16.
BMC Neurosci ; 15: 73, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24915960

RESUMEN

BACKGROUND: Recent evidence has suggested that Alzheimer's disease (AD)-associated neuronal loss may occur via the caspase-independent route of programmed cell death (PCD) in addition to caspase-dependent mechanisms. However, the brain region specificity of caspase-independent PCD in AD-associated neurodegeneration is unknown. We therefore used the transgenic CRND8 (TgCRND8) AD mouse model to explore whether the apoptosis inducing factor (AIF), a key mediator of caspase-independent PCD, contributes to cell loss in selected brain regions in the course of aging. RESULTS: Increased expression of truncated AIF (tAIF), which is directly responsible for cell death induction, was observed at both 4- and 6-months of age in the cortex. Concomitant with the up-regulation of tAIF was an increase in the nuclear translocation of this protein. Heightened tAIF expression or translocation was not observed in the hippocampus or cerebellum, which were used as AD-vulnerable and relatively AD-spared regions, respectively. The cortical alterations in tAIF levels were accompanied by increased Bax expression and mitochondrial translocation. This effect was preceded by a significant reduction in ATP content and an increase in reactive oxygen species (ROS) production, detectable at 2 months of age despite negligible amounts of amyloid-beta peptides (Aß). CONCLUSIONS: Taken together, these data suggest that AIF is likely to play a region-specific role in AD-related caspase-independent PCD, which is consistent with aging-associated mitochondrial impairment and oxidative stress.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Factor Inductor de la Apoptosis/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Hipocampo/metabolismo , Hipocampo/patología , Envejecimiento/patología , Animales , Apoptosis , Humanos , Ratones , Ratones Transgénicos , Distribución Tisular
17.
Neurodegener Dis ; 13(1): 17-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24021653

RESUMEN

BACKGROUND: Deposition of amyloid-ß (Aß) in blood vessel walls as cerebral amyloid angiopathy (CAA) is observed in the majority of Alzheimer's disease (AD) brains. Inhibition of the 5-lipoxygenase (5-LOX) pathway has recently been suggested to play a role in reducing parenchymal Aß deposition. However, products of the 5-LOX pathway also activate the peroxisome proliferator-activated receptor (PPAR) family, which promotes clearance of Aß from the brain. METHODS: In the present study, we investigated the effect of MK886, a 5-LOX-activating protein (FLAP) inhibitor and PPARα antagonist, on CAA severity in TgCRND8 mice overexpressing the human Swedish and Indiana amyloid precursor protein mutations. RESULTS: We found that MK886 significantly reduced brain levels of nicastrin and PPARα, but did not affect levels of ß-secretase, apolipoprotein E or low-density lipoprotein receptor-related protein-1. CAA severity and parenchymal plaque load was significantly decreased in both the cortex and hippocampus of mice treated with MK886 compared to control mice. CONCLUSION: These data suggest that 5-LOX and FLAP inhibitors may be useful in the treatment of CAA and AD.


Asunto(s)
Inhibidores de Proteína Activante de 5-Lipoxigenasa/uso terapéutico , Angiopatía Amiloide Cerebral/tratamiento farmacológico , Indoles/uso terapéutico , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Angiopatía Amiloide Cerebral/metabolismo , Angiopatía Amiloide Cerebral/patología , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/patología
18.
Sci Rep ; 14(1): 7235, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538727

RESUMEN

Lifestyle choices leading to obesity, hypertension and diabetes in mid-life contribute directly to the risk of late-life Alzheimer's disease (AD). However, in late-life or in late-stage AD conditions, obesity reduces the risk of AD and disease progression. To examine the mechanisms underlying this paradox, TgF344-AD rats were fed a varied high-carbohydrate, high-fat (HCHF) diet to induce obesity from nine months of age representing early stages of AD to twelve months of age in which rats exhibit the full spectrum of AD symptomology. We hypothesized regions primarily composed of gray matter, such as the somatosensory cortex (SSC), would be differentially affected compared to regions primarily composed of white matter, such as the striatum. We found increased myelin and oligodendrocytes in the somatosensory cortex of rats fed the HCHF diet with an absence of neuronal loss. We observed decreased inflammation in the somatosensory cortex despite increased AD pathology. Compared to the somatosensory cortex, the striatum had fewer changes. Overall, our results suggest that the interaction between diet and AD progression affects myelination in a brain region specific manner such that regions with a lower density of white matter are preferentially affected. Our results offer a possible mechanistic explanation for the obesity paradox.


Asunto(s)
Enfermedad de Alzheimer , Sustancia Blanca , Ratas , Animales , Enfermedad de Alzheimer/patología , Corteza Somatosensorial , Encéfalo/patología , Obesidad/patología , Sustancia Blanca/patología , Modelos Animales de Enfermedad
19.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38545621

RESUMEN

Lifestyle choices leading to obesity, hypertension and diabetes in mid-life contribute directly to the risk of late-life Alzheimer's disease (AD). However, in late-life or in late-stage AD conditions, obesity reduces the risk of AD and disease progression. To examine the mechanisms underlying this paradox, TgF344-AD rats were fed a varied high-carbohydrate, high-fat (HCHF) diet to induce obesity from nine months of age representing early stages of AD to twelve months of age in which rats exhibit the full spectrum of AD symptomology. We hypothesized regions primarily composed of gray matter, such as the somatosensory cortex (SSC), would be differentially affected compared to regions primarily composed of white matter, such as the striatum. We found increased myelin and oligodendrocytes in the somatosensory cortex of rats fed the HCHF diet with an absence of neuronal loss. We observed decreased inflammation in the somatosensory cortex despite increased AD pathology. Compared to the somatosensory cortex, the striatum had fewer changes. Overall, our results suggest that the interaction between diet and AD progression affects myelination in a brain region specific manner such that regions with a lower density of white matter are preferentially effected. Our results offer a possible mechanistic explanation for the obesity paradox.

20.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38328066

RESUMEN

Obesity reduces or increases the risk of developing Alzheimer's disease (AD) depending on whether it is assessed in mid-life or late-life. There is currently no consensus on the relationship between obesity and AD or the mechanism or their interaction. Here, we aim to differentiate the cause-and-effect relationship between obesity and AD in a controlled rat model of AD. We induced obesity in 9-month-old TgF344-AD rats, that is pathology-load wise similar to early symptomatic phase of human AD. To more accurately model human obesity, we fed both TgF344-AD and non-transgenic littermates a varied high-carbohydrate-high-fat diet consisting of human food for 3 months. Obesity increased overall glucose metabolism and slowed cognitive decline in TgF344-AD rats, specifically executive function, without affecting non-transgenic rats. Pathological analyses of prefrontal cortex and hippocampus showed that obesity in TgF344-AD rats produced varied effects, with increased density of myelin and oligodendrocytes, lowered density and activation of microglia that we propose contributes to the cognitive improvement. However, obesity also decreased neuronal density, and promoted deposition of amyloid-beta plaques and tau inclusions. After 6 months on the high-carbohydrate-high-fat diet, detrimental effects on density of neurons, amyloid-beta plaques, and tau inclusions persisted while the beneficial effects on myelin, microglia, and cognitive functions remained albeit with a lower effect size. By examining the effect of sex, we found that both beneficial and detrimental effects of obesity were stronger in female TgF344-AD rats indicating that obesity during early symptomatic phase of AD is protective in females.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA